APS News

Gravitational Wave Observatories Open New Era in Astronomy

Teams report detection of neutron-star merger along with optical and gamma ray signals

October 16, 2017 | David Voss

Following closely the announcement of the 2017 Nobel Prize in Physics, the LIGO and Virgo collaborations reported on October 16 in Physical Review Letters that they have detected the coalescence of two neutron stars — objects of lower mass and much different in character from the black holes in the previously observed mergers.  Moreover, reports from about 70 ground — and space-based observatories confirm that a variety of electromagnetic signals — from gamma rays to radio waves — was detected as well. 

The gravitational wave signal, denoted GW170817, was first observed by LIGO and Virgo on August 17.  Researchers concluded that the inspiraling objects were in the range of 1.1 to 1.6 times the mass of the Sun, and thus were unlikely to be black holes.  This mass range corresponds to that of neutron stars, typically formed in the aftermath of supernova explosions.  The data indicated that the neutron-star merger took place some 130 million light years from Earth.


Map of the sky showing gravitational wave detections
LIGO/Virgo/NASA/Leo Singer/Axel Mellinger

Map of the sky showing gravitational wave detections. GW170817 is the most recent and was correlated with electromagnetic signals observed by around 70 ground- and space-based telescopes.


Black-hole mergers are expected to produce no electromagnetic signals, as these photons could not escape the grip of gravity.  Neutron-star collisions, however, could yield bright flashes across the electromagnetic spectrum.  And indeed, a gamma-ray burst was detected by NASA’s Fermi spacecraft and confirmed by the European Space Agency’s INTEGRAL space-borne detectors. 

The coordinates for the origin of the signal corroborated those from the LIGO/Virgo data.  Soon, follow-up observations by other telescopes revealed emissions at various wavelengths.  These results helped identify the merger as located in galaxy NGC 4993 in the Hydra Constellation.

“This detection opens the window of a long-awaited ‘multi-messenger’ astronomy,” said Caltech’s David H. Reitze, executive director of the LIGO Laboratory, in a press statement. “It’s the first time that we’ve observed a cataclysmic astrophysical event in both gravitational waves and electromagnetic waves — our cosmic messengers. Gravitational-wave astronomy offers new opportunities to understand the properties of neutr­on stars in ways that just can’t be achieved with electromagnetic astronomy alone.”

News Update Archive

View Archive


APS News

Read Current Issue


Recent News Update
2021 APS Fall Prize and Award Recipients
APS announces the recipients of prizes and awards for achievements in fluid dynamics, nuclear physics, and plasma physics.
APS Thrilled with DHS Withdrawal of Proposed Elimination of Duration of Status
APS is delighted that the US Department of Homeland Security (DHS) has withdrawn a proposed rule that would have eliminated the duration of status guidelines that allow international students and researchers on certain visas to remain in the country as long as they maintain compliance with their terms of admission.
David Wirth Named 2021 PhysTEC Teacher of the Year
Each year, the Physics Teacher Education Coalition (PhysTEC) recognizes outstanding physics educators with the PhysTEC Teacher of the Year award.
APS to Launch New Open-Access Energy Sciences Journal: PRX Energy
New publication will open for submissions in late summer 2021 with publication fees waived until 2023.
Joseph Serene 1947-2021
Joseph Serene, 74, Professor Emeritus of Physics at Georgetown University and former Treasurer/Publisher of APS, passed away on May 1, 2021
Building Stronger Bridges Between Discovery, Innovation, and Prosperity
The Biden-Harris administration recently released its budget request to Congress for fiscal year 2022.