APS News

June 2004 (Volume 13, Number 6)

Closing In on The Mysterious Dark Matter?

Initial data from the Cryogenic Dark Matter Search (CDMS II) was reported at the APS April meeting in Denver. This underground observatory in Northern Minnesota has provided unprecedented sensitivity into the search for so-called Weakly Interacting Massive Particles (WIMPs). Should evidence of WIMPs be observed, it could answer the dual mystery of both the dark matter problem and supersymmetry.

The CDMS II team practices "underground astronomy" with particle detectors located nearly half a mile below Earth's surface in a former iron mine. Earth's crust blocks cosmic rays and the background particles they produce. Made of germanium and silicon crystals, the detectors are chilled to within one-tenth of a degree of absolute zero. They are capable of measuring both the charge and vibration produced by particle interactions within the crystals.

The detectors are now able to look for signals just one-fourth as intense as any seen before, and the team expects to improve sensitivity by a factor of 20 over the next few years. WIMPs will signal their presence by releasing less charge than most background particles produce for the same amount of vibration.

A WIMP, which carries no charge, is expected to have roughly one hundred times the mass of a proton. Yet WIMPs are able to slip through ordinary matter while barely leaving a trace. The presence of dark matter in the universe is detected through its gravitational effects, from the growth of structure in the early universe to the stability of galaxies today. Dark matter cannot be made of the ordinary matter forming objects in the visible universe, and constitutes as much as seven times more total mass than ordinary matter. WIMPs are a strong contender for dark matter.

The nature of dark matter is fundamental to our understanding of the formation of the universe. With the CDMS II collaboration, either the dominant mass of the universe will be discovered, or a large number of supersymmetric models will be excluded as possibilities.

WIMPs might be the as-yet-unobserved subatomic particles called neutralinos. That would provide strong evidence for supersymmetry, which predicts that every known particle has a supersymmetric partner with complementary properties, although no such partners have been observed to date. Many supersymmetry models predict that the lightest such particle, called the neutralino, has a mass of about 100 times that of the proton.


©1995 - 2017, AMERICAN PHYSICAL SOCIETY
APS encourages the redistribution of the materials included in this newspaper provided that attribution to the source is noted and the materials are not truncated or changed.

Editor: Alan Chodos
Associate Editor: Jennifer Ouellette

June 2004 (Volume 13, Number 6)

Table of Contents

APS News Archives

Contact APS News Editor


Articles in this Issue
International Physics Community Joins Forces for 2005 World Conference in South Africa
Innovation Task Force Unveils New Advocacy Campaign
APS Council Approves Statements on Subordinates and on Referencing
APS Council Honors George Pake
Integral Looks at the Cosmos Through Gamma Glasses
QuarkNet Brings Research Experience to the Hight School Classroom
Laser Science, Quantum Optics Featured at 2004 CLEO/IQEC Conference
Senators Sign Letter Calling for More DOE Funding
Closing In on The Mysterious Dark Matter?
APS, AAPT Appoint Joint Task Force on Graduate Education
Two-Day Los Alamos Event to Honor Oppenheimer
Butterflies, Tornadoes, and Time Travel
Letters
The Back Page
Inside the Beltway: A Washington Analysis
Readers Bash Beltway Column
Members in the Media
This Month in Physics History
Zero Gravity: The Lighter Side of Science
Ask the Ethicist