Challenges for Materials to Support Emerging Research Devices

C. Michael Garner*, James Hutchby+, George Bourianoff*, and Victor Zhirnov+

*Intel Corporation
Santa Clara, CA

++Semiconductor Research Corporation
Research Triangle, NC
Key Messages

- Silicon Nanotechnology is production reality and follows Moore’s law
- New materials are needed for future technologies
- Materials research is crucial for revolutionary devices
 - Synthesis
 - Metrology & Characterization
 - Modeling
- New materials will require collaboration
Agenda

• Moore's Law
• Extending CMOS
• Revolutionary CMOS
• Beyond CMOS
• Summary
Silicon Technology Reaches Nanoscale

Nanotechnology (< 100nm)

Nominal feature size

Gate Length

Source: Intel
Intel’s Transistor Research in Deep Nanotechnology Space

Experimental transistors for future process generations

- 65nm process 2005 production
- 45nm process 2007 production
- 15nm process 2009 production
- 32nm process 2009 production
- 22nm process 2011 production

Transistors will be improved for production

Source: Intel
Nanotechnology Eras

Reasonably Familiar
Nanotubes Nanowires
 Really Different

2005

LGATE
Evolutionary CMOS
Revolutionary CMOS
Exotic

2003, M. Bohr
Revolutionary CMOS
Nanomaterial Transistors

- Options for sub 20nm technologies
- Challenges: Placement and property control
1D Revolutionary CMOS Critical Properties

- Critical Synthesis Issues
- Critical Materials Properties
 - Device Material
 - Density of States as manifest in E_g, effective mass & μ
 - Gate Dielectric
 - Dielectric constant
- Critical Interface properties
 - Band Offset (Work function, fixed charge, trapped charge)
 - No Fermi level pinning
 - Lattice constant & coefficient of thermal expansion
Characterization & Modeling Challenges

- How do you know the material is “good”??
- Measurement of Properties
 - Structure and composition (nm scale)
 - Electronic properties & interactions with interface materials
- Impurities & Defects
- Modeling of Electronic Properties
 - Density of States, effective mass, Eg
 - Models of interfaces, stress effects, etc

New Metrologies & Models Needed!!!!
Exotic...
Exotic: What are we looking for?

Required characteristics:
- Scalability
- Performance
- Energy efficiency
- Gain
- Operational reliability
- Room temp. operation

Preferred approach:
- CMOS process compatibility
- CMOS architectural compatibility

Alternative state variables
- Spin–electron, nuclear, photon
- Phase
- Quantum state
- Magnetic flux quanta
- Mechanical deformation
- Dipole orientation
- Molecular state
Device Operation & Critical Properties

• At least 2 “stable” states
• Mechanism to change states
 ▪ Communication with CMOS: Voltage or Charge
 ▪ Logic:
 ♦ Ability to change the states of other identical devices
 ♦ Gain
• Mechanism to read states
 ▪ Ability of CMOS to read the states (voltage or charge)
• Material properties may limit mechanisms
Alternate State Variable Examples

- Molecular State
- Electron Spin
 - Spin Injection in semiconductors
 - Ferromagnetic semiconductors
- Orbitronics (Multiferroics)
Molecular Materials
• Fabrication of contacts is challenging
• Need better understanding of mechanisms

Critical Material Properties
- Transconductance change
- Change in Tunnel distance
- Delocalization-Localized of states
- Collective conformational changes
- Charge Storage

Critical Interface Properties
- Atomic energy levels in resonance with the molecular energy states
- Work Function
- Contact material DOS
Characterization & Modeling Challenges

- How do you know you have a “good” device??
- **Measurement of Properties**
 - Structure & contact interaction
 - Electronic energy levels & interactions with interface materials
- **Modeling of Electronic Properties**
 - Density of States, effective mass, E_g
 - Models of interface electronic interactions
 - Charge storage, excited local states, conduction mechanisms
 - Accurate prediction of energy levels for molecular structures

New Metrology & Models Needed!!!!
Spintronic Materials
Semiconductor Spintronics

Interface Critical Properties
- Interface Band Structure Matching [energy & symmetry] (as manifest in spin injection efficiency)
- No band-bending

Critical Materials Properties
- Semiconductor:
 - Spin Orbit Coupling (As manifest in spin lifetimes, and diffusion lengths)
 - g-Factor

Ferromagnetic contact source:
- Coercivity

How can we separate materials issues??
Ferromagnetic Semiconductor Spintronics

Critical Interface Properties
- Spin Orbit Coupling as manifest in (Interface Magnetic Anisotropy)
- Minimal band bending

Critical Material Properties
- Spin Exchange Interaction
- Exchange Splitting Energy
- T curie
- Moment per atom

How can we separate materials issues??
• Need new metrology to measure spin properties & interactions at nm scale
 ▪ Spin polarization, lifetimes, diffusion lengths
 ▪ Spin interaction with interface band bending, roughness, states
 ▪ Local electric & magnetic fields
 ▪ Stress interactions with spin lifetimes
Spin Material Modeling Needs

• Interaction of spin lifetime and diffusion lengths with:
 ▪ Defects
 ▪ Band bending
 ▪ Stress
 ▪ Interfacial roughness
 ▪ Interface states and defects
 ▪ Spin injection processes
Orbitronics & Multiferroics
Perovskite Materials

- Ferroelectrics
- Ferromagnetics
- Multiferroics (Ferroelectric & Ferromagnetic)
- Colossal Magnetoresistance
- Semiconductors
- High-T Superconductors
- Promising optical properties
- Phononic properties
Multiferroics

- Interplay between charge, orbital, and spin degrees of freedom
- Magnetic field control of ferroelectric polarization
- Switching of magnetic polarization induced by electric fields
Orbitronics

- Orbitronics: Perovskite manganese oxides
 - RBaMn_2O_6
 - $R=$Sm, Eu, Gd, Tb, Dy, Ho, Y
Challenges

• Key Properties
 ▪ Piezoelectric, Multiferroic, Colossal Magnetoresistance
 ▪ Stress can interact with multiferroic properties
• Good News: Multiferroic & CMR
• Bad News: Piezoelectric (Properties Depend on stress)
• Material unknown
 ▪ Vacancies, interstitials and impurities can cause local stress
 ▪ How pure and defect free do the materials need to be?
 ▪ Integration Issues: Coefficient of Thermal Expansion (CTE)
New Metrologies Needed

- Nanometer characterization of:
 - Piezoelectric properties
 - Electro & Magneto-optical properties
 - Ferroelectric and Ferromagnetic properties
 - Vacancy, defect, impurity interactions
 - Local stress effects
 - Interface properties

AFM, KPM, MFM, etc.
Multiferroic Modeling Needs

- Basic models of the relationship between structure, bonding, and the resulting properties
 - Extend from local structure to extended properties
 - Models of defect and vacancy impact on structure and properties
Special nm Metrology Needs
nm Scale Material Diagnostics

- Atomic structure of carbon based materials
 - Low energy TEM
- Modeling of nm probe interactions with materials
 - Improve analysis of signals from AFM based and multi-probe metrologies
Summary

• Silicon Nanotechnology is production reality and follows Moore’s law
• New materials are needed for future technologies
• Materials research is crucial for revolutionary devices
 ▪ Synthesis
 ▪ Metrology & Characterization
 ▪ Modeling
• New materials will require collaboration
 ▪ Gov’t, Universities, Research Institutes, & Industry
For further information on Intel's silicon technology and Moore’s Law, please visit the Silicon Showcase at www.intel.com/research/silicon