The most oft-quoted pro-science declaration of 2001 is Allan Bromley’s March 9 New York Times Op-Ed which concludes with, “No science, no surplus. The assumption on which Allan’s statement stands is that funding is needed to nourish a well-lubricated machine to convert intellectual capital into new science and which, in turn, transforms technological innovation into economic expansion. The problem is that ill-considered legislation and State Department policies and procedures threaten to throttle the international intellectual exchange on which our scientific and economic prosperity depend.

The US domestic science enterprise is part of a global machine whose bells and whistles bear the many labels of widely varying national origins. Thirty-five percent of all doctorates granted by US institutions in the natural sciences and engineering go to foreign scholars and this is roughly the same as the percentage of foreign scientists resident in US research universities. Cut off this source of erudite input and the machine grinds to a halt. This may be happening now.

In the immediate post-war era, roughly 70% of the world’s research productivity in the natural sciences originated in the US. This was the result of the fact that the world’s scientific talent gathered in this country to exploit the largest and most unique research facilities available in a planet devastated by war. Today, when 70% of the articles published in The Physical Reviews are proffered by foreign authors, US submissions have become a declining minority presence in a formerly largely domestic publication once dominated by US physicists.

Of course this is not quite true. It is not possible to portray domestic US science as a purely nationalist venture. As a nation of immigrants, our academic community has benefited from the talents and educational systems of many nations. This constant renewal is largely responsible for the wealth and power of the US. In sum, the capacity of US science is directly related to its efficiency at integrating new talent and in its participation in the worldwide intellectual commerce. Does this mean that we cannot develop native-born scientists? Have we arrived at the point in our national lives that we have to import scientists along with farm workers and day laborers?

The fact is that science has done a dismal job in nurturing and exploiting the talents of native-born minorities and women. And we’ve done little better in recruiting young people owing to a failing educational system. While recruitment in some of the natural sciences has increased the training of women—especially in biology and medicine, we have not cleared the obstructions preventing the elevation of the most senior and talented to positions of authority. Even if we succeeded in training more minorities and women as scientists, would that solve the problem?

No. We may be able to increase domestic recruitment by a few percent, but in the absence of an overhaul of the nation’s education system, we could never hope to match the large numbers of scientists who come to this country to receive advanced education, do research and develop new ideas. Does this mean that we must engage in predatory recruitment of intellectuals and denude developing and re-developing countries of their talent, thereby diminishing their prospects for economic improvement? No. We must fashion a world where global intellectual transactions—like monetary and commercial arrangements (at least as they now exist among the industrialized nations)—benefit all participants. We must have an international system where scientists may freely work with colleagues anywhere for the benefit of all.

Problems with visas

The process of acquiring visas is the valve regulating the flow of scientific talent into the US. In the past, the single most important hurdle to the granting of visas has been economic and the fear of illegal immigration as defined in various subsections of paragraph 214 of the Immigration and Naturalization Act. However, a complex array of provisions affixed to the INA has sought to reduce the flow of industrial and defense technologies to competitors by restricting scientific exchange. Many of these provisions require scientific and technical expertise to account for the fact that both our economic and defense technologies are dependent on foreign exchange—that to impede such information flow is to do injury to our own economy and security. The law and if administration do not have mechanisms or expertise to weigh risks in the national interest. The reasons are easy to enumerate:

• Consular officers in our embassies and consulates abroad usually do not have the background to judge scientific credentials or the value of a scientific visit. Scientists seeking entry to the US are treated in the same manner as all visitors—business, tourist or job applicant.

• There is ambiguity and confusion concerning the guidelines for enforcing provisions of the INA. Many US universities and national laboratories employ expert staff to deal with visa problems. But their interactions with consular officials are punctuated with inconsistencies in interpretation of regulations and law. And since consular officials are held accountable, it is safer and easier for them to deny an application than to examine the facts and to adjudicate on the basis of merit.

• The advent of the “sensitive countries list,” (countries assumed to be engaged in activities counter to US interests) the “entities list,” (the list of institutions deemed to have violated US non-proliferation statutes), export control regulations (to include such vague concepts as “deemed exports” and “sensitive but unclassified information”) have given the Department of State an impossible task: to monitor and prevent the flow of scientific and technical information deemed critical to the economic and defense interests of the US. Not only do these contradictory and obscure provisions lead to delays and obstacles impeding scientific exchange, they often impose the ludicrous circumstance of impairing the exchange of information developed by foreign scientists.
international scientific meetings are convened in the US and foreign participation in these events contributes to the centrality of
been shown to have a direct impact on our commercial expansion and development. In addition, some of the most important
huge contribution to both our domestic science enterprise and to our economy since innovations in science and technology have
unprecedented flow of intellectual talent into our country has continued unabated over the past half-century. This represents a
scientists to embargoed countries. US science has maintained its international leadership by promoting scientific exchange. The
scientific exchange.
S&T advisor work with both the Office of Science and Technology Cooperation in the Bureau of Oceans and International
affecting entry of scientists into the US.
community: Dr. Norman Neureiter. It is urgent that this office be strengthened and be given the opportunity to coordinate issues
added to the staff. The position is currently held by a senior scientist who has the trust and confidence of the US scientific
Remedial actions
information.
progress of applications are often rebuffed. Rarely do government employees respond to inquiries or provide meaningful
Cuba and the US.
with grave concern since it directly affects the freedom of citizens to participate in important cultural exchange of benefit to both
scientists have been denied licenses on often inconsistent and contradictory grounds. The US community views such restrictions
anthropologists, climatologists and some others have been able to travel to Cuba with increasing frequency, many physical
is organized by an entity to which the US is a member but which is not headquartered in the US. While social scientists,
Treasury and Commerce embargoes
US scientists are routinely denied permission by the Treasury Department to travel to Cuba unless an international meeting is
organized by an entity to which the US is a member but which is not headquartered in the US. While social scientists,
anthropologists, climatologists and some others have been able to travel to Cuba with increasing frequency, many physical
scientists have been denied licenses on often inconsistent and contradictory grounds. The US community views such restrictions
with grave concern since it directly affects the freedom of citizens to participate in important cultural exchange of benefit to both Cuba and the US.
Applications for license are often complex and time-consuming with little feedback after submission. Attempts to track the
progress of applications are often rebuffed. Rarely do government employees respond to inquiries or provide meaningful
information.
Remedial actions
Last year, in response to language added to the State Department appropriations bill, a Science and Technology Advisor was
added to the staff. The position is currently held by a senior scientist who has the trust and confidence of the US scientific
community: Dr. Norman Neureiter. It is urgent that this office be strengthened and be given the opportunity to coordinate issues affecting entry of scientists into the US.
It is proposed that short and long-term scientific visas be processed under a new category of visa and that the Department
S&T advisor work with both the Office of Science and Technology Cooperation in the Bureau of Oceans and International
Environmental and Scientific Affairs, and the Bureau of Consular Affairs, to administer a coherent, effective policy to promote
scientific exchange.
It is also proposed that the State S&T Advisor assist the Treasury and Commerce departments in dealing with visits of US
scientists to embargoed countries. US science has maintained its international leadership by promoting scientific exchange. The
unprecedented flow of intellectual talent into our country has continued unabated over the past half-century. This represents a huge contribution to both our domestic science enterprise and to our economy since innovations in science and technology have been shown to have a direct impact on our commercial expansion and development. In addition, some of the most important international scientific meetings are convened in the US and foreign participation in these events contributes to the centrality of

Physics and Society, vol. 30, no 4, October , 2001
US science on the world stage. However, impediments to the granting of visas have burgeoned. Scientist visits have been curtailed and this has jeopardized a variety of programs dependent upon short and long-term visits. Scientists from the former Soviet Union, China, India and many developing countries have found it increasingly difficult to gain entry to the US to continue their research and collaboration with US colleagues. Even scientists from traditional allies such as Germany have been barred for reasons that defy explanation. If this situation continues to worsen, the center of gravity for important research may shift away from the US.

In their 1999 report, *The New Challenge to America’s Prosperity: Findings from the Innovation Index*, the Council on Competitiveness issued a warning. “Finally, the authors note that despite the advances of other nations, the United States is failing to invest in the ‘fundamentals’ of its own innovation system. Although the past decade has been one of the strongest periods of U.S. macroeconomic growth since World War II, total spending on basic research is flat or heading downward, and the declining numbers of degrees granted in the physical sciences and engineering suggest that reversing this trend will involve concerted public policy changes. These observations suggest that America’s current innovation leadership is increasingly rooted in past investment and that the long run basis for our future strength is being eroded—all while other nations are accelerating their own efforts.”

Irving Lerch

APS International Affairs
lerch@aps.org

---

Our National Energy Situation is a Mess!

Albert A. Bartlett.

*(Invited oral testimony (limited to 5 minutes) given to the Subcommittee on Energy of the Science Committee of the U.S. House of Representatives, May 3, 2001, in Room 2318 of the Rayburn House Office Building in Washington, D.C.)*

For years we have seen recommendations from the Department of Energy that suggest that the leaders of the Department have little scientific understanding of the problems of energy.

We have seen the President of the United States sending his Secretary of Energy on bended knee to plead with OPEC leaders to increase petroleum production so as to keep our gasoline prices from rising. *For a country that boasts that it is the world’s only superpower, this is profoundly humiliating.*

Gasoline prices are rising. California currently has an electrical energy crisis that is likely to spread. Natural gas prices are rising rapidly, which poses real economic hardship for millions of American home owners who depend on natural gas to heat their homes in the winter.

The only energy proposals we see are for short-term fixes, sometimes spread over a few years, that seem to ignore the important real-world realities of resource availability and consumer costs.

For years, scientists have warned that fossil fuels resources are finite and that long-range plans should be made. These plans must recognize that growing rates of consumption of fossil fuels will lead, predictably, to serious shortages that are now starting to appear.

For years we have heard learned opinions from non-scientists that resources are effectively infinite: that the more of a resource that we consume the greater are the reserves of that resource; and that the human intellect is our greatest resource because the human mind can harness science and technology to solve all of our resource shortages. There seem to be *two cultures; science and non-science.* Each has its own Ph.D. "experts" and "think tanks." Each has its own lobbyists who argue vigorously that their path is the proper path to achieve a sustainable society. So let’s compare the two recommended paths.

The centerpiece of the scientific path is conservation; hence it is appropriate to call this path the "Conservative Path." On this path the federal government is called on to provide leadership plus strong and reliable long-term support toward the achievement of the following goals. The U.S. should:

1. Have an energy planning horizon that addresses the problems of sustainability through many future decades.
2. Have programs for the continual and dramatic improvement of the efficiency with which we use energy in all parts of our society. Improved energy efficiency is the lowest cost energy resource we have.
3. Move toward the rapid development and deployment of all manner of renewable energies throughout our entire society.
4. Embark on a program of continual reduction of the annual total consumption of non-renewable energy in the U.S.
5. Recognize that moving quickly to consume the remaining U.S. fossil fuel resources will only speed and enlarge our present serious U.S. dependence on the fossil fuel resources of other nations. This will leave our children vitally vulnerable to supply disruptions that they won’t be able to control.
6. Finally, and most important, we must recognize that population growth in the U.S. is a major factor in driving up demand for energy. This calls for recognizing the conclusion of President Nixon’s Rockefeller
Commission Report (Commission on Population Growth and the American Future, 1972). The Commission concluded that it could find no benefit to the U.S. from further U.S. population growth. In contrast, the non-scientific path suggests that resources are effectively infinite, so we can be as liberal as we please in their use and consumption. Hence this path is properly called the “Liberal Path.” The proponents of the Liberal Path recommend that the U.S. should:

1. Make plans only to meet immediate crises, because all crises are temporary;
2. Not have government promote improvements in energy efficiency because the marketplace will provide the needed improvements.
3. Not have government programs to develop renewable energies because, again, the marketplace can be counted on to take care of all of our needs.
4. Let fossil fuel rates continue to increase because to do otherwise might hurt the economy.
5. Dig and Drill. Consume our remaining fossil fuels as fast as possible because we "need them." Don’t worry about our children. They can count on having the advanced technologies they will need to solve the problems that we are creating for them.
6. Claim that population growth is a benefit rather than a problem, because more people equals more brains.

We should not be confused by the conflicting expertise that supports each of these two paths because there is a very fundamental truth:

For every Ph.D. there’s an equal and opposite Ph.D.

For our U.S. energy policy, we must choose between the Conservative and the Liberal Paths. The paths are the exact opposites of each other. Each is advocated by academically credentialed experts. On what basis can we make an intelligent choice? There is a rational way to choose. If the path we choose turns out to be the correct path, then there’s no problem. The problems arise in case the path we choose turns out to be the wrong path. It follows then that we must choose the path that leaves us in the less precarious position in case the path we choose turns out to be the wrong one. So there are two possible wrong choices that we must compare.

If we choose the Conservative Path that assumes finite resources, and our children later find that resources are really infinite, then no great long-term harm has been done.

If we choose the Liberal Path that assumes infinite resources, and our children later find that resources are really finite, then we will have left our descendants in deep trouble.

There can be no question. The Conservative Path is the prudent path to follow.

However, it is the Liberal Path that we are so eagerly taking today.

If resources turn out to be infinite, then we will be OK on the Liberal Path. But if resources turn out to be finite, then today’s choice of the Liberal Path will create enormous and critical problems for our children.

Albert A. Bartlett.
Professor Emeritus of Physics
University of Colorado at Boulder
Albert.Bartlett@colorado.edu