

A relocatable lander to explore Titan's prebiotic chemistry and habitability



### **Dragonfly:** Flights of Exploration on an Exotic Ocean World 18 May 2023

Melissa Trainer, Dragonfly Deputy Principal Investigator NASA Goddard Space Flight Center

Mid-Atlantic Senior Physics Group (MASPG)

### A little more about me ...

| Position and Institution | Research Scientist, Goddard Space Flight Center                                                                                                                  |  |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Tragonfly Team Role      | Deputy Principal Investigator, DraMS Instrument Lead                                                                                                             |  |
| Education                | <ul> <li>B.A., Chemistry, Franklin and Marshall College</li> <li>Ph.D., Atmospheric Chemistry, University of Colorado at Boulder</li> </ul>                      |  |
| Other activities         | <ul> <li>Venus Mass Spectrometer on NASA's DAVINCI Mission</li> <li>Science Team on NASA's Curiosity Rover</li> <li>Hiking and camping with my family</li> </ul> |  |







### Unique and compelling science

- We do not know how life came to form on Earth and cannot go back to study our own prebiotic history
- Places elsewhere in our Solar System provide pieces to the puzzle of the chemical processes that led to life
- Titan is the most like the early Earth and holds keys to understanding our chemical origins



### Unique and compelling science

### Why Titan?



### The largest of Saturn's 62 moons



All bodies are to scale except for Pan, Atlas, Telesto, Calyso, and Helene, whose sizes have been exaggerated by a factor of 5 to show rough topography

Saturn



### Titan's unique environment





### Titan's unique environment





### Titan's unique environment









- Saturn and Titan's year = 29.5 Earth years
- Saturn's axial tilt = 26.7°
- Titan's day = 16 Earth days

| Northern winter solstice | Oct 2002 |
|--------------------------|----------|
| Equinox                  | Aug 2009 |
| Northern summer solstice | May 2017 |
| Equinox                  | May 2025 |
| Northern winter solstice | Apr 2032 |
| Equinox                  | Jan 2039 |



### **Exploration of the Saturnian System**



### Cassini-Huygens spacecraft







### Cassini-Huygens exploration

- Saturn arrival, July 2004
- *Huygens* Titan descent and landing, Jan. 2005
- Cassini in Saturn orbit 2004 2017
  - 126 close Titan flybys



Titan's orbit

### Titan

- Diameter: 5,150 km (3,193 miles)
- Surface gravity: 1.35 m/s2 (0.14 g)
  - 14% of gravity at Earth's surface
  - 83% of gravity at Moon's surface
- Surface temperature: 94 K (–179°C, –290°F)
  - Bedrock composition: water ice
  - Atmospheric composition: nitrogen, few % methane
- Surface pressure: 1.5 bar
  - 1.5× pressure at Earth's surface

Voyager 2 23 August 1981 Cassini 26 October 2004



### Titan

- Diameter: 5,150 km (3,193 miles)
- Surface gravity: 1.35 m/s2 (0.14 g)
  - 14% of gravity at Earth's surface
  - 83% of gravity at Moon's surface
- Surface temperature: 94 K (–179°C, –290°F)
  - Bedrock composition: water ice
  - Atmospheric composition: nitrogen, few % methane
- Surface pressure: 1.5 bar
  - 1.5× pressure at Earth's surface
- Extended atmosphere to > 1000 km



### Titan

- Diameter: 5,150 km (3,193 miles)
- Surface gravity: 1.35 m/s2 (0.14 g)
  - 14% of gravity at Earth's surface
  - 83% of gravity at Moon's surface
- Surface temperature: 94 K (–179°C, –290°F)
  - Bedrock composition: water ice
  - Atmospheric composition: nitrogen, few % methane
- Surface pressure: 1.5 bar
  - 1.5× pressure at Earth's surface
- Extended atmosphere to > 1000 km
- Deep interior ocean of liquid water





### Q: Why does Titan look hazy? A: Complex organic chemistry!

- Photochemistry in upper atmosphere produces complex carbon molecules
- Rich organic material covers the surface
- Potential for organic compounds to have mixed with liquid water for extended periods of time at the surface

Titan is a singular destination for understanding the chemical processes on our own planet that supported the development of life















Cassini synthetic aperture radar





#### **Tectonic structures**

#### Cassini synthetic aperture radar





### Potential cryovolcanism

Cassini synthetic aperture radar and near-IR imaging

**Sotra Patera** 1.7 km (5,600 ft) deep **Doom Mons** 1.45 km (4,800 ft) high



#### **Potential cryovolcanism**

Cassini synthetic aperture radar and near-IR imaging













### **Clouds and weather patterns**

Methane cycle is similar to Earth's water cycle















Energy

- Sunlight, photochemistry





- Energy
  - Sunlight, photochemistry
- Organic material
  - Abundant complex organics





- Energy
  - Sunlight, photochemistry
- Organic material
  - Abundant complex organics
- Liquid
  - Water
    - available at the surface in Titan's past
    - interior ocean





- Energy
  - Sunlight, photochemistry
- Organic material
  - Abundant complex organics
- <u>*Two*</u> liquids
  - Water
    - available at the surface in Titan's past
    - interior ocean
  - Methane
    - active methane cycle like Earth's water cycle
    - liquid methane could support development of alternate biological systems





- Energy
  - Sunlight, photochemistry
- Organic material
  - Abundant complex organics
- <u>*Two*</u> liquids
  - Water
    - available at the surface in Titan's past
    - interior ocean
  - Methane
    - active methane cycle like Earth's water cycle
    - liquid methane could support development of alternate biological systems



On Titan alone, can we study prebiotic chemistry in the full context of a planetary environment and Earth-like surface processes.



### Titan offers the next step to answer fundamental questions

- What makes a planet or moon habitable?
- What chemical processes led to the development of life?
- Has life developed elsewhere in our solar system?





Lander with aerial mobility enables wide-ranging in situ exploration – key for science measurements

#### Cassini revealed where to look for answers



- Diverse surface materials and environments
- Earth-like variety of geologic processes
- Science challenge is to get instruments to multiple sites to sample materials and measure composition

### Heavier-than-air mobility highly efficient at Titan



- Atmospheric density 4x higher than Earth's reduces wing/rotor area required for lift
- Gravity 1/7th of Earth's → reduces power required



• On Mars, the paradigm is to ROVE





- On Mars, the paradigm is to ROVE
- Titan has a huge advantage over Mars:
  - Titan's atmosphere 4x denser than Earth's
     →all forms of aviation are easier (lighter- and heavier-than-air)<sup>1</sup>
    - →reduces wing/rotor area required to generate lift
  - Titan's gravity 1/7th Earth's reduces the power for required lift



- On Mars, the paradigm is to ROVE
- Titan has a huge advantage over Mars:
  - Titan's atmosphere 4x denser than Earth's
     →all forms of aviation are easier (lighter- and heavier-than-air)<sup>1</sup>
    - →reduces wing/rotor area required to generate lift
  - Titan's gravity 1/7th Earth's reduces the power for required lift









<sup>1</sup>Lorenz 2000; Langelaan et al. 2017

- On Mars, the paradigm is to ROVE
- Titan has a huge advantage over Mars:
  - Titan's atmosphere 4x denser than Earth's
     →all forms of aviation are easier (lighter- and heavier-than-air)<sup>1</sup>

→reduces wing/rotor area required to generate lift

- Titan's gravity 1/7th Earth's reduces the power for required lift
- On Titan, we can *FLY* 
  - Provides the means to access different geologic terrains 10s to 100s of kilometers apart
  - Does not require high resolution images of surface to navigate







<sup>1</sup>Lorenz 2000; Langelaan et al. 2017

### **Dragonfly rotorcraft lander features**



0

### **Dragonfly mission timeline**

- Launch NET June 2027, and Titan arrival by 2034
  - Direct atmospheric entry
  - Similar latitude and same time of year as descent of Huygens probe





El=1270 km

E+6 min h=157 km

E+101 min h=4 km

E+118 min h=800 m



### Dragonfly landing site and region of exploration

- Initial landing site provides access to a variety of materials
  - Sand dunes: organic sediments
  - Interdune areas: materials with a water-ice component
  - Selk impact crater: materials where organics may have mixed with liquid water impact melt



### Dragonfly landing site and region of exploration



### **Dragonfly exploration strategy**

Dune

sands

#### ~3.3 years, ~74 Tsols (Titan days) of science operations

Ejecta

blanket

Possible outlying

blobs of melt

- Traverse distance up to ~100 km
- Exploration of ~25-30 unique sites

Interdunes may

have sand as well

as substrate

Individual dune spacing

~3-4 km



200m -

100m

-100m

-200m

### **Flight on Titan**

- 3 types aerial flights used in traverse; imaging provides context, scouting of future landing sites\*
  - Jump flights with or without preceding Scout flight are used to exit sand sea
  - A Leapfrog flies over previously scouted landing area, scouts next landing zone, descends to landing area



- Max range speed ~ 10 m/s (22 mph). Typical flight duration ~ 20-30 minutes.
- 'Leapfrog' strategy to allow off-line assessment of terrain hazards by science team on Earth prior to planning landing at new location



### Multidisciplinary science measurements

#### Prebiotic chemistry

 Analyze chemical components and processes at work that produce biologically relevant compounds

#### Habitable environments

- Measure atmospheric conditions, identify methane reservoirs, and determine transport rates
- Constrain processes that mix organics with past surface liquid water reservoirs or subsurface ocean

#### Search for biosignatures

- Search for chemical evidence of water- or hydrocarbon-based life





### Multidisciplinary science measurements

- DraMS: Mass Spectrometer
  - GSFC, CNES MSL SAM, ExoMars MOMA
- **DrACO**: Drill for Acquisition of Complex Organics
  - Honeybee Robotics
- **DraGNS**: Gamma-ray and Neutron Spectrometer
  - APL, LLNL MESSENGER GRNS, Psyche GRNS
  - GSFC, Schlumberger Pulsed Neutron Generator
- **DraGMet**: Geophysics & Meteorology Package
  - APL sensor suite + JAXA Lunar-A seismometer
- **DragonCam**: Camera Suite
  - MSSS OSIRIS-REx ECAM, MSL Mastcam, Mars 2020 descent camera





## Characterization of landforms and surface processes in multiple geologic settings







## Characterization of landforms and surface processes in multiple geologic settings







## Meteorological and geophysical monitoring of Titan as an interconnected system





### Monitor atmospheric conditions, identify CH<sub>4</sub> reservoirs, and determine transport rates

- Temperature, pressure, CH<sub>4</sub>, H<sub>2</sub>, wind speed & direction

- Diurnal and spatial variations; atmospheric profiles

Constrain regolith properties (e.g., porosity)

- Thermal response (dampness), dielectric constant

Constrain processes that mix organics with past surface liquid water or subsurface ocean

- E-Field (Schumann resonance), seismic activity

### Seismological monitoring of an ocean world

DraGMet

- Detection and characterization of level of seismic activity
- Variation with orbital phase







### Classification of surface materials at every site



- Measure bulk elemental surface composition
  - Classify surface material

18 May 2023

- Detect minor inorganic elements
- Reveal near-surface stratigraphy





51

## Acquisition of Titan's solid surface materials in a cryogenic environment



#### DrACO: Sample surface materials for detailed chemical analyses with DraMS





## Comprehensive study of the chemical complexity and diversity of Titan's solid surface

- Analyze chemical components and processes that produce biologically relevant compounds
- Complementary sample analysis modes:
  - LDMS = Laser Desorption Mass Spectrometry
  - GCMS = Gas Chromatography Mass Spectrometry



(Trainer et al., 2017)



DraMS fed by DrACO

### **DraMS Molecular Analysis of Surface Materials**





Sensitive and Selective MS Gas chromatography targeting potential biomolecules Search for enantiomeric excess Derivatization options provide flexibility

Mode

**GCMS** 

# LDMS Mode











### Dragonfly in the Desert



### Watch Pragonfly Movies!

<u>https://svs.gsfc.nasa.gov/13562</u>
 <u>https://www.youtube.com/watch?v=XbglDa3rzBk</u>
 **And more at** https://dragonfly.jhuapl.edu/

# DRAGONFLY

http://dragonfly.jhuapl.edu