Impact of Pohang Accelerator to Large-scale Science Programs in Korea

APS April Meeting

St. Louis, Missouri

April 13, 2008

Won Namkung

Pohang Accelerator Laboratory (PAL)
Department of Physics
Pohang University of Science and Technology (POSTECH)
Pohang 790-784, Korea
Outlines

• Brief Facts about Korea

• Large-scale Science Programs in Korea
 - PLS at POSTECH
 - Hanaro, KSTAR, PEFP, ITER-Korea

• Government R&D
 - S&T budget and Policy

• Industrial Company for Global Competitiveness
 - Samsung, POSCO, Hyundai Heavy

• Summary
Brief Facts about Korea

People & Language: Korean (~4,500 yrs in the area)

Area (South): ~100,000 km² (~38,000 sq. mi.)

Population (South): 48.5 million

Recent History:
- 1945: Divided into North and South
- 1950~1953: Korean Conflict
- 1960~1970: Modernization (Migration to cities)
- 1970~1980: Industrialization (Heavy Industries)
- 1990~2008: High-tech oriented

Leading Industries:
- Electronics, Steel, Ship-building, Automobile,
- Chemicals, Construction, Textiles

Economy: GDP = 970 B$, 20 k$/capita in 2007

Religion: Christian (~30%), Buddhism (~30%)

Education: > 80% high-school seniors go to college
Large-scale Science Programs in Korea

On-going programs:

<table>
<thead>
<tr>
<th>Program</th>
<th>Construction period</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLS - Light Source:</td>
<td>1988 - 1994</td>
</tr>
<tr>
<td>KSTAR - Fusion Tokamak:</td>
<td>1996 - 2008</td>
</tr>
<tr>
<td>PEFR - Proton Linac:</td>
<td>2002 - 2012</td>
</tr>
<tr>
<td>ITER-Korea – ITER member:</td>
<td>2006 - 2016</td>
</tr>
</tbody>
</table>

Proposals:
- X-ray FEL
- 2nd Light Source
- Heavy Ion accelerator
Established by POSCO, a steel company, in 1986

One of the leading S&T Universities in Korea along with SNU in Seoul and KAIST in Daejeon

11 Academic Departments in Science and Engineering

Students: Undergraduate: 1,200
 Graduate: 1,500

Faculty members: ~240
POSTECH Campus and PAL
• In 1987, POSTECH, a newly established university, proposed to construct a synchrotron light source on its campus.

• PLS is a 3rd generation synchrotron radiation source:
 - 2 GeV injector linac and storage ring with upgrade option to 2.5-GeV.

• Construction Project: April 1988 ~ December 1994
 - Funded by POSCO (60%) & Government (40%)

• Operation: funded by Government (80%) & POSCO (20%)
Pohang Light Source (PLS) at PAL
Statistics for Experiments and Users at PAL
Number of Publications at PAL

Note: Data for 2007 is tentative
Examples of Research at PLS: Academic and Industry

- Molecular Cell
 * Researcher: Professor Joo (2012)

- The 8 to Z of DNA
 * Researcher: Professor Kim (2013)

- Nature
 * Researcher: Professor Kang (2014)

- Nature
 * Researcher: Professor Jo (2015)

- Future LCD and Bio-tech Field

- Plasma Gas Curing

- LNG converter
 * Researcher: POSCO (2005)
Hanaro Overview

- **Research Nuclear Reactor**
 - 30-MW open-tank-in-pool type
 - 20% U_3Si-Al Fuel

- **National users’ facility**
 - Intense neutron source for neutron science
 - Medical & industrial application of Radioisotopes

- **First Criticality Achieved**: Feb. 1995

- **Construction & Operation by**: Korea Atomic Energy Research Institute (KAERI)
Hanaro Reactor
KSTAR Overview

• Fusion Research Tokamak
 - All Super-conducting magnets
 - Steady-state capable tokamak with a major radius of 1.8 m

• National users’ facility
 - Long-pulse tokamak plasma research
 - Heating and current drive for steady-state operation

• Project Period: Jan. 1996 - June 2008

• First Plasmas: June 2008 (Cool-down started in April 1, 2008)

• Construction & Operation by National Fusion Research Institute (NFRI)
KSTAR Experimental Buildings
KSTAR Project Chronology

- **1995. 12.** Start of KSTAR Project (Phase I)
- **1996. 11.** KSTAR Concept Review
- **1997. 12.** KSTAR Tokamak Systems Engineering Review
- **1998. 09.** Start of KSTAR Project (Phase II)
- **1999. 08.** KSTAR Magnet System Review
- **2000. 09.** KSTAR EU Workshop (Engineering Review)
- **2002. 06.** Start of KSTAR Project (Phase III)
- **2004. 01.** Start of Assembly
- **2004. 08.** Completion of VV and Cryostat Fabrication
- **2006. 03.** Completion of TF Magnet Structure Fabrication
- **2006. 11.** Completion of All Magnet System
- **2007. 04.** Installation of Cryostat Lid
Installation of Cryostat Cylinder
ITER Design and Technology Development

Central Solenoid Model Coil
- Radius 3.5 m
- Height 2.8 m
- $B_{\text{max}} = 13$ T
- $W = 640$ MJ
- 0.6 T/sec

Divertor Cassette
- Heat Flux > 15 MW/m², CFC/W
- Attachment Tolerance ± 2 mm

Vacuum Vessel Sector
- Double-Wall, Tolerance ± 5 mm

Remote Maintenance of Divertor Cassette

Blanket Module
- HIP Joining Tech
- Size: 1.6 m x 0.93 m x 0.35 m

Remote Maintenance of Blanket

Toroidal Field Model Coil
- Height 4 m
- Width 3 m
- $B_{\text{max}} = 7.8$ T
- $I_{\text{max}} = 80$ kA

REMOTE MAINTENANCE OF DIVERTOR CASSETTE
<table>
<thead>
<tr>
<th>Item</th>
<th>Total Value (kIUA)</th>
<th>KO</th>
<th>KO Value (kIUA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TF Conductor</td>
<td>215.0</td>
<td>20%</td>
<td>43.0</td>
</tr>
<tr>
<td>2. Vacuum Vessel</td>
<td>124.2</td>
<td>20%</td>
<td>24.84</td>
</tr>
<tr>
<td>3. Vacuum Vessel Ports</td>
<td>78.5</td>
<td>76%</td>
<td>59.66</td>
</tr>
<tr>
<td>4. Blanket First Wall *</td>
<td>87.0</td>
<td>10%</td>
<td>8.7</td>
</tr>
<tr>
<td>5. Blanket Shield Block</td>
<td>58.0</td>
<td>10%</td>
<td>5.8</td>
</tr>
<tr>
<td>6. Assembly Tooling</td>
<td>22.0</td>
<td>100%</td>
<td>22.0</td>
</tr>
<tr>
<td>7. Thermal Shield</td>
<td>28.8</td>
<td>100%</td>
<td>28.8</td>
</tr>
<tr>
<td>8. Tritium SDS *</td>
<td>14.5</td>
<td>88%</td>
<td>12.76</td>
</tr>
<tr>
<td>9. AC/DC Converters</td>
<td>82.2</td>
<td>38%</td>
<td>31.24</td>
</tr>
<tr>
<td>10. Diagnostics</td>
<td>137.5</td>
<td>3.3%</td>
<td>4.54</td>
</tr>
</tbody>
</table>

Total KO Value 241.34 kIUA (≒ 342.7 M€)

 ITER-Korea Procurement Items

Critical Path
Tokamak Main
Ancillary
Proton Engineering Frontier Project

- **High-Power Proton Accelerator**: Staged construction of 1.0 GeV, 20 mA proton linac
 - 100 MeV: New Frontier Program (2002-2012)
 - 1.0 GeV: Under R&D Study

- **Government decided the construction site in Gyeongju**
 - Near KTX station (March 2006)

- **National Users’ Facility**: Intense neutron source for basic and applied science research

- **Lead Lab.**: Korea Atomic Energy Research Institute (KAERI)
PEFP 20 MeV Linear Accelerator
Proton Accelerator Site

Express Railway (KTX)
Under Construction

Gyeong-Bu Expressway (No.1)
Korean Government Reorganization

- The new administration combined *Ministry of Education* and *Ministry of Science and Technology* in March 2008.

- A bureau for large-scale science programs is established

- There are growing demands for promoting basic sciences and multi-disciplinary users’ facilities
Science and Technology Budget in Korea

![Bar chart showing the Science and Technology Budget in Korea from 1995 to 2007. The budget increased significantly from 1995 to 2007, with the budget for 2007 being the highest.]
2008 Korean Government R&D Budget

<table>
<thead>
<tr>
<th>Category</th>
<th>Budget (10.8 T KRW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Science</td>
<td>3.0 T KRW</td>
</tr>
<tr>
<td>Nano & Space</td>
<td>1.8 T KRW</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>1.3 T KRW</td>
</tr>
<tr>
<td>Information Science</td>
<td>1.1 T KRW</td>
</tr>
<tr>
<td>Training & Infra</td>
<td>2.0 T KRW</td>
</tr>
<tr>
<td>Special Fund Support</td>
<td>1.6 T KRW</td>
</tr>
</tbody>
</table>

Total: 10.8 T KRW

Note: 1 T KRW ~ 1 B U$
Types of Science & Technology Policy

- Basic Research
- Applied Research
- Development
- Products

- Advanced Countries
- Logical Approach
- Reversed Approach

New areas
Leading industrial companies in Korea built-up their own R&D capability for global competitiveness, for examples,

Electronics
Iron & Steel
Shipbuilding
Automobile
Communications
POSCO Plants in Pohang & Gwangyang

Established: 1968
Employees: 17,300
Steel Production: 31.3 M tons (2007)
Revenue: 23.9 B$
Net Profit: 4.0 B$
Big Industrial Companies in Korea

<table>
<thead>
<tr>
<th>Units (Trillion KRW)</th>
<th>Samsung Electronics</th>
<th>POSCO Steel</th>
<th>Hyundai Heavy Ship building</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>Net Profit</td>
<td>Revenue</td>
<td>Net Profit</td>
</tr>
<tr>
<td>2005</td>
<td>57.0</td>
<td>22.0</td>
<td>10.0</td>
</tr>
<tr>
<td>2006</td>
<td>59.0</td>
<td>20.0</td>
<td>13.0</td>
</tr>
<tr>
<td>2007</td>
<td>63.0</td>
<td>22.0</td>
<td>16.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University</th>
<th>SKK University</th>
<th>POSTECH</th>
<th>Ulsan University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Area</td>
<td>KSTAR SC Coil R&D</td>
<td>PAL Accelerator</td>
<td>KSTAR Vacuum Chamber</td>
</tr>
</tbody>
</table>
Summary

- **Korea has successfully improved her economic condition through industrialization. The underline driving force is considered as, not only the government planning but also the trained man-power available through individual education.**

- **Education has been the top priority in a normal family:**
 More than 80% of high-school senior goes to colleges.
 (One may note that the largest student body in USA is Korea)

- **Trained man-power returned home for academic and industrial positions along with improved economics.**

- **Academic research condition is now much improved to train man-power domestically.**
With the success of the light source, research reactor, and tokamak projects,
- There are growing demands for more multi-user facilities such as light sources.
- Government now established a bureau for large-scale science programs including space science and fusion research.

Industry built-up its own R&D capability for global competitiveness and they start to recognize supports for basic sciences.

For the large-scale science projects, we need consensus among scientists in this economy-oriented society.