DYNAMICS OF POLYMER SOLUTIONS
2008 APS symposium honoring P.-G. de Gennes

William W. Graessley, Princeton University

1) Molecular Size, Radius of Gyration R_g

2) Osmotic Pressure π, Interaction Parameter χ

3) Plateau Modulus G_N^0 (Entanglement Molecular Weight M_e)

4) Zero-Shear Viscosity η_o (Characteristic Molecular Weight M_c)

5) Monomeric Friction Coefficient ζ_o
FLEXIBLE CHAIN LINEAR POLYMERS

chain length $\propto M$

coil size R_g

good solvent $R_g \propto M^{0.588}$

(self-avoidance, excluded volume interaction)

theta solvent $R_g \propto M^{0.5}$

(volume exclusion cancelled)
CHAIN DIMENSIONS, GOOD AND THETA SOLVENTS

\[R_g = M^\nu \quad M \gg M^\dagger \]

\(\nu = 0.5 \) theta; \(\nu = 0.59 \) good

for \(M < M^\dagger \), good and theta sizes are the same
INTRINSIC VISCOSITY, $[\eta] = \lim_{c \to 0} \frac{\eta(c) - \eta_s}{\eta_s c}$, A PERVADED VOLUME MEASURE

pervaded volume: $\nu_{\text{per}} \sim \left(\frac{4\pi}{3}\right) R_g^3$

$[\eta] \sim \frac{N_a \nu_{\text{per}}}{M} \propto \frac{R_g^3}{M}$

self concentration:

$c_{\text{self}} = \frac{M}{N_a \nu_{\text{per}}} = \rho \phi_{\text{self}} \sim \frac{1}{[\eta]}$

theta solvent: $[\eta] \propto M^{0.50}$, good solvent: $[\eta] \propto M^{0.76}$

Polystyrene (CHN and TOL)

Pervaded volume: $\nu_{\text{per}} \sim \left(\frac{4\pi}{3}\right) R_g^3$

$[\eta] \sim \frac{N_a \nu_{\text{per}}}{M} \propto \frac{R_g^3}{M}$

Self concentration:

$c_{\text{self}} = \frac{M}{N_a \nu_{\text{per}}} = \rho \phi_{\text{self}} \sim \frac{1}{[\eta]}$

Theta solvent: $[\eta] \propto M^{0.50}$, good solvent: $[\eta] \propto M^{0.76}$
INFLUENCES ON FLEXIBLE COIL DYNAMICS IN SOLUTION

Dilute Range:
1) excluded volume
2) hydrodynamic interaction

Beyond Overlap:
3) hydrodynamic drag
4) mutual uncrossability

overlap concentration \(c^* \) or \(\phi^* \):
when \(c \) (or \(\phi \)) reaches \(c_{self} \) (or \(\phi_{self} \))
OSMOTIC PRESSURE: \[\pi = \frac{\mu_s(c) - \mu_s(0)}{V_s} \]

\[\pi = \frac{cRT}{M} \quad c \ll c^* \]

\[\pi = Bc^p \quad c \gg c^* \]

\[c^* \propto \frac{M}{R_g(0)} ; \quad R_g(0) \propto M^\nu \]

at \(c = c^* \) \[\frac{c^*}{M} = (c^*)^\nu \Rightarrow \frac{M}{MM^{3\nu}} = \left(\frac{M}{M^{3\nu}} \right)^p \]

so \(p = \frac{3\nu}{3\nu - 1} \) and thus

theta solvent \(p = 3 \); good solvent \(p = 2.3 \)
Noda et al., Osmometry Data

\[\pi (\text{Pa}) \]
\[c \ (\text{g cm}^{-3}) \]

\[10^{-3} \quad 10^{-2} \quad 10^{-1} \]

\[10^0 \quad 10^1 \quad 10^2 \]

\[\pi \]
\[M / cRT \]

\[c / c^* \]

\[\phi > \phi^* \] (semi-dilute)

screening length, correlation volume

\[\frac{n(r)}{r^3} \propto \phi_{\text{self}}(r) \]

\[\xi = r \quad \text{when} \quad \phi_{\text{self}}(r) = \phi \]

Using \(\xi = R_g(0) \) at \(\phi = \phi^* \):

\[\xi = R_g(0) \left(\frac{\phi}{\phi^*} \right)^{\frac{\nu}{3\nu-1}} ; \quad \pi \sim \frac{k_B T}{\xi^3} \]
CHAIN DIMENSIONS VS CONCENTRATION

By screening analysis:

\[R_g^2(\phi) = R_g^2(0 \left(\phi/\phi^*\right)^{\frac{2\nu-1}{3\nu-1}}) = R_g^2(0 \left(\phi/\phi^*\right)^{-0.23}) \]

Where does \(R_g \) reach \(\left(R_g \right)_\theta \)?

\[\phi^*_\theta = \phi^* \left(R_g(0)/\left(R_g \right)_\theta \right)^{2/0.23} \propto M^0 \]

<table>
<thead>
<tr>
<th>Polymer Species</th>
<th>(\phi^\dagger)</th>
<th>(M^\dagger)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS</td>
<td>0.10</td>
<td>13,200</td>
</tr>
<tr>
<td>PaMS</td>
<td>0.10</td>
<td>17,000</td>
</tr>
<tr>
<td>PMMA</td>
<td>0.14</td>
<td>11,000</td>
</tr>
<tr>
<td>PDMS</td>
<td>0.11</td>
<td>13,000</td>
</tr>
<tr>
<td>PIB</td>
<td>0.070</td>
<td>19,000</td>
</tr>
<tr>
<td>PI</td>
<td>0.14</td>
<td>3,800</td>
</tr>
<tr>
<td>PBD</td>
<td>0.085</td>
<td>5,200</td>
</tr>
<tr>
<td>PE</td>
<td>0.050</td>
<td>6,500</td>
</tr>
<tr>
<td>iPP</td>
<td>0.11</td>
<td>6,600</td>
</tr>
<tr>
<td>PEO</td>
<td>0.070</td>
<td>6,700</td>
</tr>
</tbody>
</table>
WHY IS M^\dagger SO LARGE?

PS-TOL: $M^\dagger \sim 10^4$, 200 Backbone Bonds, 20 Kuhn Steps

Self-avoiding Walks ($\chi = 0$), $M^\dagger \Rightarrow \sim 2$ Kuhn Steps

Flory coil swelling formula leads to

$$\left(M^\dagger \right)^{1/2} (1 - 2\chi) = \left(\frac{8\pi N_a V_s}{3\nu^2} \right) \left(\frac{R_s^2}{M} \right)^{3/2},$$

then to $\chi = 0.34$, and finally to the inference, $\phi^\dagger \sim 0.32$ for $\chi = 0$.

$\chi \gtrsim 0.3$ FOR MOST POLYMER SOLUTIONS. WHY?

$$\frac{\chi RT}{V_s} \sim (\delta_s - \delta_p)^2 + \frac{\alpha_s T \delta_s^2}{2} \left(\frac{\alpha_s - \alpha_p}{\alpha_s} \right)^2 + \ldots$$

CED mismatch FV mismatch ETC

On average, $\alpha_s / \alpha_p \sim 1.7$, leading to $\chi_{FV} \sim 0.3$
CONCENTRATED SOLUTIONS, $\phi^c < \phi < 1$

1) Intramolecular interactions screened out
2) Free-draining flow patterns
3) Entanglement and local drag dominate the dynamics
4) Reptation is a primary mechanism for relaxation
STRESS RELAXATION MODULUS

Simple Shear Deformation:

\[G_N^o = \text{plateau modulus} \]
\[\eta_o = \int_0^\infty G(t) \, dt \quad \text{zero - shear viscosity} \]
\[\tau_o = \frac{\int_0^\infty tG(t) \, dt}{\int_0^\infty G(t) \, dt} \quad \text{terminal relaxation time} \]
PLATEAU MODULUS VS CONCENTRATION

\[G_N^0(\phi) = G_N^0 \phi^{2.3} \]

\[M_e(\phi) = \frac{\rho \phi RT}{G_N^0(\phi)} = M_e \phi^{-1.3} \]

\[E(\phi, M) = \frac{M}{M_e(\phi)} \text{ entanglements/chain} \]

Polybutadiene, 925k, in a good solvent (PO), a near theta solvent (DOP) and a 1.8k PBD oligomer.

\[G_N^0(\phi) = 1.15 \times 10^6 \phi^{2.29} \ (Pa) \]

\[5 < E(\phi, M) < 490 \]
OSMOTIC MODULUS vs ENTANGLEMENT MODULUS

Doi-Edwards theory:

\[G_N^0(\phi) \propto \frac{\phi}{[\alpha(\phi)]^2} \]

binary contact density:

\[\nu(\phi) \propto \phi^2 \]

distance between contacts:

\[d \propto \nu^{-1/3} \propto a \propto \phi^{-0.67} \]

\[(a(\phi) = a(1)\phi^{-0.61} \quad \text{NSE}) \]

so, for theta or good solvents:

\[G_N^0(\phi) \propto \phi^{7/3} \propto \phi^{2.33} \]

Milner 2005:

\[G_N^0/\pi = 0.025 \left(\frac{R_s^i}{l_p} \right)^{2/3} \]
\[\eta_o = (\text{monomeric friction}) \times (\text{structural factor}) \]

\[\eta_o = \zeta_o(T, \phi, \cdots) F(\phi, M) \]

When corrected for end effects:

\[\eta_o(\phi, M) \propto \phi M \quad \phi M < \phi M_c \]

\[\eta_o(\phi, M) \propto (\phi M)^{3.4} \quad \phi M > \phi M_c \]

For PVAc:

\[M_c = 9.5k \]

\[M_c = 24.5k \]
\[\phi M \ or \ \phi^{1.3} M \ for \ \eta_o? \]

Adjusted to constant monomeric friction coefficient:

\[\eta = \eta_s \left(\frac{\phi M}{\phi^*} \right) \]

- \[\phi^*_M = 2.0k \]
- \[\phi^*_M = 6.3k \]
- \[\phi^*_M = 110k \]

for PBD with:
- \[M = 925k \]
- \[\phi^* M = 7.6k \]
- \[\phi^* M = 6.3k \]
- \[\phi^* M = 2.0k \]

\[\eta_o - \eta_s \] vs. \[\phi M \]

\[\eta_o - \eta_s \] vs. \[\phi^{1.3} M \]
FREE VOLUME ADJUSTMENTS

\[\eta_0 / M = \text{constant} \quad \zeta_0 \]

\[\eta_0 (\text{Pa s}) / M (\text{Pa s}) \]

\[\eta_0 (\text{Pa s}) \]

\[M / M_e \]

\[\phi \]