DYNAMICS OF SUSPENDED COLLOIDAL PARTICLES NEAR A WALL

Minami Yoda
G. W. Woodruff School of Mechanical Engineering
minami@gatech.edu
OUTLINE

- The problem and its motivation
- The (evanescent-wave PTV) technique
 - Near-wall particle distributions and displacements
- Poiseuille flows
- Electrokinetically driven flows
- Summary
A PARTICLE NEAR A WALL

- What are the dynamics of a particle suspended in a flowing fluid near a solid wall?
 - How is the particle velocity related to the fluid velocity?

- A few complications:
 - When $a < h < 1 \mu m$: Brownian effects significant
 - When $h \approx O(1 \mu m)$: surface forces may be significant

$h > a$, but $h = O(a)$
Another complication

- Wall, particle surfaces charged
- Fluid conducting with mobile ions: electric double layers (EDL) on particle, wall surfaces
Microfluidics: flows with length scales of $O(1-10^2 \mu m)$

- Faster diffusion: $\tau_D \propto (\delta_D)^2$
- Large surface areas, small volumes \Rightarrow surface forces significant

Characterize transport within $O(1 \mu m)$ of the wall

- Track fluorescent particles ($a = 50 \text{ nm} - 500 \text{ nm}$) illuminated by evanescent waves created at solid-fluid (refractive index) interface by total internal reflection of light
- $I(z) = I_0 \exp \{-z/z_p\}$
- $z_p = f(\lambda, \theta, n_1, n_2) \approx 100 \text{ nm}$ for glass-water interface
- Image $z \leq 4z_p$ based on imaging system noise floor
Brownian effects: \(Pe = O(1-10^2) \)
- Particle “mismatch”
- Asymmetric diffusion \(\Rightarrow \) overestimation of velocities
 Sadr et al. 07

Nonuniform particle distribution
- EDL interactions, vd Waals effects
- Measure particle displacements and distributions

Nonuniform illumination
- Range of particle image sizes and intensities
MULTILAYER PTV

- Exploit nonuniform illumination to determine particle distributions and velocity profiles for \(z < 400 \) nm
 - Assume particle image intensity \(I_p(z) \) has exponential decay with length scale \(z_p \)
 - Particle edge distance from wall \(h = z_p \ln\left\{\frac{I_p^0}{I_p}\right\} \)

- Steady-state particle distribution
 - Variation in particle images (\(\sigma \) of \(I_p^0 \) = 9\%), average over ensemble of \(O(10^5) \) particles

- Near-wall (particle and fluid) velocity profile
 - “Bin” particles into different layers based on \(h \), then determine velocities parallel to wall at different \(z \) using particle tracking
POISEUILLE FLOWS
SLIP

- **Is the no-slip boundary condition valid for \(z < 1 \, \mu m \)?**
 - Navier partial-slip BC:
 \[
 u_w = b \frac{\partial u}{\partial z} \bigg|_{z=0}
 \]
 \(b = \) slip length
 - Studies report \(b \sim O(10–100 \, \text{nm}) \)
 - for Newtonian liquids flowing over (mainly) nonwetting surfaces
 - Local methods: slip lengths extrapolated from near-wall velocity data
 - Wide variation in measured slip lengths
 - Nonzero \(b \) attributed to surface wettability, (usually higher) shear rates, dissociated or gaseous layer (“nanobubbles”), change in fluid properties, …
Study slip in fully-developed Poiseuille flow through $H = 33 \, \mu m$ deep channel: $Re_H = 0.03–0.12$

- Compare with exact solution

$$u(z) = \frac{H^2}{2\mu} \frac{\Delta p}{L} \left[\frac{z}{H} \left(1 - \frac{z}{H} \right) \right]$$

channel $AR = 16$

- Linear velocity profile for $z < 400 \, nm$: shear rate $\dot{\gamma} \approx 500–2300 \, s^{-1}$

- Hydrophobic, hydrophilic channels etched on same wafer

- Hydrophilic channels: untreated fused-silica walls with rms surface roughness $\sim 3 \, nm \Rightarrow$ contact angle $28 \pm 4^\circ$

- Hydrophobic channels coated with $\sim 2 \, nm$ thick monolayer of OTS \Rightarrow contact angle $100 \pm 4^\circ$
EXPERIMENTAL DETAILS

- **Fluids**
 - Monovalent electrolyte solutions: different salt concentrations (2 and 10 mM), pH (~6.4 and ~7.7)
 - Particles: \(a \approx 50 \text{ nm} \) fluorescent polystyrene; \(\phi \approx 20 \text{ ppm} \)
 - Fluid with particles degassed for each experiment

- **Averaged “background” images** (over 1200 images)

![Images showing hydrophilic and hydrophobic surfaces with labeled dimensions: 154 µm and 24 µm]
- **Nonuniform distribution**
 - Few particles at $h/a < 1$
 - Similar results for hydrophobic channel
- **“Bin” particles into 3 (sub)layers (particle center at $z = h + a$)**
 - $1 \leq z_I / a \leq 3$
 - $3 \leq z_{II} / a \leq 5$
 - $5 \leq z_{III} / a \leq 7$
- **Use number density to determine avg. z for each layer**
 \[\bar{z}_I = \frac{\int_I c(z) z \, dz}{\int_I c(z) \, dz} \]
VELOCITY RESULTS

- Hydrophilic channel (10 mM, pH7.7)
 - Average over 5 expts.
 - Error bars 95% confidence intervals

- Linear curve-fits to data account for uncertainties in u and z
 - Shear rates within 4.5% of exact solution for hydrophilic case and 5% for hydrophobic cases (on average)

\[
\begin{array}{|c|c|}
\hline
\gamma & u \text{ [mm/s]} \\
\hline
491 & 983, 1410, 1720, 2030, 2260 \text{ s}^{-1} \\
\hline
\end{array}
\]
In all but one out of 48 cases, \(b \) < experimental uncertainty

- In that case, \(b = 23 \pm 22 \) nm
- Hydrophobic: \(b \) “more organized”; increases with shear rate

\[\text{Li & Yoda 10} \]
ELECTROKINETICALLY DRIVEN FLOWS
In addition to Brownian effects, charged particle and wall, conducting fluid with mobile ions

- For electrokinetically driven flows, external electric field parallel to wall
ELECTROKINETIC EFFECTS

- Electroosmosis: counterions in wall EDL driven by E
 - Fluid away from walls driven by motion of fluid in EDL \Rightarrow uniform flow outside EDL
- Electrophoresis: charged particle driven by E
- Particle transported by electroosmotic flow, subject to electrophoresis
 - Measured particle speed
 $u_P = u_{EO} - u_{EP}$

$$E$$

u_{EO}

u_{EP}
BROWNIAN DIFFUSION

- Do electrophoretic forces alter near-wall (Brownian) diffusion?
- **Balance thermal forces with Stokes drag**
 - In unbounded fluid, Stokes-Einstein relation \(D_\infty = \frac{kT}{6\pi \mu a} \)
 - Additional hydrodynamic drag due to wall \(\Rightarrow \) anisotropic diffusion parallel, normal to wall
 - For diffusion parallel to wall
 \[
 \frac{D_{\|}}{D_\infty} = 1 - \frac{9}{16} \left(\frac{a}{z} \right) + \frac{1}{8} \left(\frac{a}{z} \right)^3 - \frac{45}{256} \left(\frac{a}{z} \right)^4 - \frac{1}{16} \left(\frac{a}{z} \right)^5
 \]
 - For diffusion normal to wall, approximation of infinite series
 \[
 \frac{D_{\perp}}{D_\infty} = \frac{6(z/a)^2 - 10(z/a) + 4}{6(z/a)^2 - 3(z/a) - 1}
 \]
EXPERIMENTAL DETAILS

- **Four different fluorescent polystyrene tracers**
 - \(a = 110\pm12 \text{ nm}; \ \zeta_P = -60.6\pm4.3 \text{ mV} \)
 - \(a = 240\pm22 \text{ nm}; \ \zeta_P = -57.4\pm3.1 \text{ mV} \)
 - \(a = 371\pm34 \text{ nm}; \ \zeta_P = -96.2\pm2.9 \text{ mV} \)
 - \(a = 461\pm34 \text{ nm}; \ \zeta_P = -99.9\pm3.2 \text{ mV} \)
 - Tracers in monovalent electrolyte solution (1 mM, pH~9) \Rightarrow Debye length scale $\lambda < 7$ nm

- **Electrokinetically driven flows**
 - \(E = 15 \text{ V/cm, 22 V/cm, and 31 V/cm} \)
 - Weak Poiseuille flow ($E = 0 \text{ V/cm}$) \Rightarrow Measured $u_P < 7 \mu\text{m/s}$

- **Image pairs** (exp. 0.5 ms) spaced (within pair) by $\Delta t = 1.3 \text{ ms, 1.6 ms, 1.9 ms and 2.2 ms}$
PARTICLE DISTRIBUTIONS

- **Number density** c
 - Normalized particle edge distance
 \[h = z_p \ln \left(\frac{I_p^0}{I_p} \right) \]
 - Divide $O(10^5)$ particle images into three (100 nm thick) layers
 - In each layer, determine particle displacements parallel, normal to wall by particle tracking

![Graph showing particle density distribution](image)

- **Graph**
 - $a = 110$ nm
 - $c \left[\left(10^{16} \text{ m}^{-3}\right) \right]$ vs. h/a
 - Points for 0 V/cm and 15 V/cm
ESTIMATING DIFFUSION

- PDF of displacements parallel, normal to wall
 - Curve-fit Gaussian: extract σ^2 for each layer
 - Plot σ^2 vs. $\Delta t \Rightarrow$ slope $= 4D_{||}(\Delta t)$, $2D_{\perp}(\Delta t)$

\[E = 0 \text{ V/cm} \]
\[a = 110 \text{ nm} \]
\[\text{Layer II} \]
DIFFUSION RESULTS

- Data at $E = 0$ V/cm, 15 V/cm agree and agree with theory
 - h-positions of D_\parallel, D_\perp determined from particle distributions $c(h)$
- No discernible effect of external electric field on diffusion

$$\frac{D}{D_\infty}$$

Normal

Parallel

Δ ○ 0 V/cm
Δ ● 15 V/cm

$a = 110$ nm
$a = 240$ nm

APS/DFD (11/10)
Electrokinetically driven flow: $E = 0 \text{ V/cm, then 31 V/cm}$
- E drives larger particles farther away from wall

$a = 110 \text{ nm}$

$a = 461 \text{ nm}$
PARTICLE DISTRIBUTIONS

- "Electrokinetic lift"
 - Dielectrophoretic-like force due to nonuniform electric field in particle-wall gap

Yariv 06

APS/DFD (11/10)
Estimate lift force assuming Boltzmann distribution

- Force on particle $F \propto a^2, E^2$: no discernible effect of ζ_p
- $F = O(10^{-14} \text{ N})$ for $E = O(10 \text{ V/cm})$
SUMMARY

- Evanescent wave-based particle tracking
 - Measure particle displacements and steady-state particle distributions within $O(100 \text{ nm})$ of wall

- Poiseuille flow
 - Slip lengths of Newtonian liquids over hydrophilic and hydrophobic surfaces zero within experimental uncertainties after accounting for nonuniform tracer distributions

- Electrokinetically driven flow (E parallel to wall)
 - Moderate electric fields appear to have no effect on diffusion
 - Using H-S to predict electrophoretic velocity, even within $O(a)$ of wall gives good estimate of electroosmotic flow
 - Dielectrophoretic-like force \Rightarrow particles farther from wall: force scales as a^2, E^2
ACKNOWLEDGEMENTS

- Haifeng Li: Poiseuille flow
- Yutaka Kazoe: Electrokinetically driven flow
- Claudia Zettner, Reza Sadr: Evanescent wave-based particle velocimetry
- S.H. Behrens (GT ChBE): Light scattering measurements
- J.P. Alarie, J.M. Ramsey (UNC): channels
- A.T. Conlisk (OSU): Electrokinetically driven flows
- P.J. Mucha, C. Hohenegger (UNC): Brownian diffusion

- NSF CBET
- JSPS