Wetting, spreading & capillary adhesion: putting shape-instability to purpose

Paul Steen
Cornell University
Chemical Engineering
acknowledgments

<table>
<thead>
<tr>
<th>PhD Students</th>
<th>Collaborators</th>
<th>Sponsors</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL Altieri</td>
<td>Dominik Barz</td>
<td>NASA</td>
</tr>
<tr>
<td>JB Bostwick</td>
<td>Susan Daniel</td>
<td>NSF</td>
</tr>
<tr>
<td>CT Chang</td>
<td>Peter Ehrhard</td>
<td>DARPA</td>
</tr>
<tr>
<td>BL Cox</td>
<td>Amir Hirsa</td>
<td></td>
</tr>
<tr>
<td>AM Macner</td>
<td>Monika Nitsche</td>
<td></td>
</tr>
<tr>
<td>DM Slater</td>
<td>Kyra Stephanoff</td>
<td></td>
</tr>
<tr>
<td>HB van Lengerich</td>
<td>Mike Vogel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>XiuMei Xu</td>
<td></td>
</tr>
<tr>
<td>Cornell Fluids</td>
<td>D Anderson</td>
<td></td>
</tr>
<tr>
<td>Colleagues</td>
<td>S Grice</td>
<td></td>
</tr>
</tbody>
</table>

References:
- Low-Gravity Fluid Mechanics
- Interfacial Instability
- Capillary Surfaces
- Capillary Flows with Forming Interfaces

11/23/2010
as Mother Nature teaches!

BBC ‘Secret Weapons’
the beetle’s feat

\[F = \sigma \left\{ 2\pi R \sin(\alpha_0) + \pi R^2 (\kappa_1 + \kappa_2) \right\} \]
favorable scaling

\[Adhesion \text{ Strength} \propto \frac{1}{\text{Droplet Radius}} \]

Q. a man-made device based on perimeter-packing?
grab/release concept

1.7 mm tube diameter

Aluminum foil

lab demo
capillary coarsening

van Lengerich, Vogel, PHS, PRE
Q. can passive design mitigate coarsening?
dynamical-system

Hagen-Poiseuille viscosity resists

\[\frac{dV_1}{dt} = c_{21} \Delta p_{21}, \quad V_1(0) = V_{10} \]
\[\frac{dV_2}{dt} = c_{12} \Delta p_{12} + c_{32} \Delta p_{32}, \quad V_2(0) = V_{20} \]
\[\frac{dV_3}{dt} = c_{23} \Delta p_{23}, \quad V_3(0) = V_{30}. \]

\[\sum_{j=1}^{N} V_j = \text{const}. \]
coarsening rates

\[\dot{V}_L = c \Delta P_L \]

Equation for pressure

\[P_L \sim 1/r \sim 1/V_L^{1/3} \]

Thus \(\dot{V}_L = cV_L^{-1/3} \)

Total number of large drops

\[N_L \sim 1/V_L \]

\[N_L \sim t^{-3/4} \]

\[N_L \sim t^{-3/7} \]

\[c \sim 1 \]

\[c \sim N_L \sim 1/V_L \]
capillary coarsening recap

- neighbors compete, self-similarity
- no ‘signature’ for defective pads
Q. how to make switchable (active)?

A. electro-osmotic pumping

probing the barrier

adhesion device

big-mac device performance

Linoleum: 700 mg
Plywood: 725 mg
Brick: 670 mg
Sandpaper (150 grit): 650 mg
Roof shingle: 675 mg

also tested successfully

shown tested here

Linoleum: 700 mg
Plywood: 725 mg
Brick: 670 mg

11/23/2010
silicon-wafer device

Glass frit pump
(device thickness ~ 5 mm, mass ~ 4 g)

e = 500, 300 (or 150 mm)

11/23/2010
average force measure

A. perimeter-packing achieved!

droplet manipulation

Q. natural frequencies?

literature

Theory
- Strani & Sabetta (84, 88)
- Ganan & Barerro (90)
- Bauer & Chiba (04, 05)
- Lyubimov et al. (04, 06)
- Fayzrakhmanova & Straube (09)

Computation
- Basaran & DePaoli, 94
- DePaoli et al. (95)
- Wilkes & Basaran, 01
- James et al. (03)

Experiment
- Rodot et al. (1979)
- James et al. (03)
- Daniel et al. (04)
- Noblin et al. (04)
- Couder et. al (05)
- Vukasinovic et al. (07)
- Brunet et al. (09)
Rayleigh oscillations

\[\omega_k^2 = k(k - 1)(k + 1)(k + 2) \frac{\sigma}{\rho r^3} \]

\(k = 0, 1, 2, \ldots \)

surface tension \(\sigma \)

liquid density \(\rho \)

sphere radius \(r \)

\(k \)

Figure 6.2 Photographs of the shape modes of oscillations for liquid drops suspended in another liquid for modes \(n = 2, 3, \) and \(4 \), from [71]. Courtesy E. H. Truesd.
spherical-cap base-state w/ ‘Hocking’ spreading

\[0 < \alpha_0 < \pi \]

\[0 \leq \Lambda < \infty \]

Hocking, JFM 1977
Davis, JFM 1980
classify mode shapes

\[\eta(s, \varphi, t) = y(s)e^{i\omega t}e^{il\varphi} \]

\(k, l = \text{polar, azimuthal wavenumber}\)

<table>
<thead>
<tr>
<th>Mode</th>
<th>(k, l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zonal (l = 0)</td>
<td>(k, l = 4, 0)</td>
</tr>
<tr>
<td>Sectoral (l = k)</td>
<td>(k, l = 3, 3)</td>
</tr>
<tr>
<td>Tesseral (l \neq k)</td>
<td>(k, l = 6, 4)</td>
</tr>
</tbody>
</table>
classify mode shapes

\[(a_0, L) = (90^\circ, 0)\]

\[
\begin{array}{cccccccccc}
 & k=1 & k=2 & k=3 & k=4 & k=5 & k=6 & k=7 & k=8 & k=9 \\
 l=0 & & & & & & & & & \\
l=1 & & & & & & & & & \\
l=2 & & & & & & & & & \\
l=3 & & & & & & & & & \\
l=4 & & & & & & & & & \\
l=5 & & & & & & & & & \\
l=6 & & & & & & & & & \\
l=7 & & & & & & & & & \\
l=8 & & & & & & & & & \\
l=9 & & & & & & & & & \\
\end{array}
\]
unfolding of spectra
sessile-drop recap

- spectra split for $(\alpha_0, \Lambda) \neq (90^\circ, 0)$
- damped (effective dissipation) for $\Lambda \neq 0, \ 1/\Lambda \neq 0$

[3,3] mode

side

top
concluding remarks

• beetle lessons
 – perimeter-packing, switchable

• coarsening & coalescence mitigation
 – passive design

• grab-release device w/ eo pump
 – perimeter-packing, switchable adhesion

• sessile-drop oscillations
 – spectral splitting