Using DNS to Understand Aerosol Dynamics

Lance R. Collins
Sibley School of Mechanical & Aerospace Engineering
Cornell University
Direct Numerical Simulations of Microstructures

Aerosols
- Dispersion
- Turbulence modulation
- Coagulation

Droplets*
- Breakup
- Coalescence

Polymer Molecules
- Orientation
- Stretch
- Drag Reduction

* M. Loewenberg
 J. Blawzdziewicz
 V. Cristini

* J. G. Brasseur

Copyright Lance Collins, 2003
Outline

- Background on aerosols
- Direct numerical simulations (DNS)
- Numerical Results
- Theory
- Experiments
- Summary
Examples

DuPont TiO$_2$ Process

Cloud Condensation Nuclei (CCN)

Buoyancy

R. Shaw, ARFM 2003
Turbulent clustering

Aerosol particles in a turbulent flow field cluster outside of vortices due to a centrifugal effect, sometimes referred to as “preferential concentration.”

Maxey (1987)
Squires & Eaton (1991)
Wang & Maxey (1993)
Snapshot of particle clustering in DNS

Snapshot from a DNS (St=1 and $R_{\lambda} = 54$). The **green tubes** are vortex tubes where fluid circulates rapidly and the **white** shows where the particle concentration is greater than 10 times the mean.

How does this affect coalescence rates?
Direct numerical simulation

\[\nabla \cdot \mathbf{u} = 0 \]

\[\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} + \frac{\nabla p}{\rho} = \nu \nabla^2 \mathbf{u} + \mathbf{F} \]
Particle update

\[
\begin{align*}
\frac{dx_p^{(i)}}{dt} &= \mathbf{v}_p^{(i)} \\
\frac{dv_p^{(i)}}{dt} &= \left[\mathbf{u}(x_p^{(i)}, t) - \mathbf{v}_p^{(i)} \right] \frac{\tau_p^{(i)}}{\tau_p^{(i)}} + \sum_{j \neq i} F^{(ij)} \\
\tau_p^{(i)} &= \frac{1}{18} \frac{\rho_p}{\rho} \left(\frac{d}{\eta} \right)^2
\end{align*}
\]

Stokes drag

Collisions
(neighborhood search)
Particle-particle interactions

Elastic Rebound:

Coalescence:

Interpenetration:
Parameters

Flow:
\[U' \] turbulence intensity
\[\varepsilon \] dissipation rate
\[\nu \] kinematic viscosity

Particles:
\[d \] diameter
\[\rho_p \] density
\[n \] loading

\[R_\lambda = \sqrt{\frac{15}{\nu \varepsilon}} U'^2 \]

\[St = \frac{\tau_p}{\tau_\eta} \] Stokes number
\[\frac{d}{\eta} \] size parameter
\[\Phi \] volumetric loading
Parameter Ranges

<table>
<thead>
<tr>
<th>System</th>
<th>R_λ</th>
<th>St</th>
<th>d/η</th>
<th>Φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clouds</td>
<td>10^4</td>
<td>$10^{-4} - 10^{-1}$</td>
<td>$10^{-2} - 10^{-3}$</td>
<td>$< 10^{-6}$</td>
</tr>
<tr>
<td>DNS</td>
<td>$50 - 160^*$</td>
<td>$10^{-2} - 1$</td>
<td>$10^{-2} - 10^{-1}$</td>
<td>$< 10^{-5}$</td>
</tr>
<tr>
<td>Exp't</td>
<td>$10^2 - 10^3$</td>
<td>$> 10^{-3}$</td>
<td>$10^{-2} - 10^{-1}$</td>
<td>$< 10^{-5}$</td>
</tr>
</tbody>
</table>

- We are not able to simulate **atmospheric Reynolds numbers**
- It’s therefore critical that we understand the importance of this parameter (from experiments, theory, etc.)

* High end DNS is 4096^3, corresponding to $R_\lambda \sim 1000$
 Gotoh & Fukayama (2001)
Limiting theories for collision

Saffman and Turner (1956)
Zero Stokes number:

\[N_c = \frac{1}{2} n^2 d^3 \left(\frac{8\pi \epsilon}{15 \nu} \right)^{1/2} \]

Abrahamson (1975)
Infinite Stokes number:

\[N_c = \frac{1}{2} n^2 d^2 \left(\frac{16\pi \frac{v^2}{p}}{3} \right)^{1/2} \]

Brunk, Koch & Lion (1998)
Wang, Wexler and Zhou (1998)

Reade & Collins (1998)

\(n \) number density
\(\frac{v^2}{p} \) particle kinetic energy
Collision vs Stokes number

Sundaram & Collins (1997)
Evolution of size distribution

Reade & Collins JFM (2000)
General collision formula

\[N_c = \pi d_{ij}^2 n_i n_j g_{ij}(d_{ij}) \int_{-\infty}^{0} (-w) P_{ij}(w | d_{ij}) \, dw \]

\[d_{ij} = \frac{(d_i + d_j)}{2} \]

\[g_{ij}(r) = \text{radial distribution function (RDF)} \]

\[w = \text{relative velocity} \]

\[P(w | r) = \text{PDF of relative velocity} \]

RDF corrects for preferential concentration
(dominant effect at low Stokes numbers)

Sundaram & Collins (1997)
Wang, Wexler and Zhou (1998)
RDF \(g(r) \equiv \frac{\text{# pairs}}{\text{expected # pairs}} \)

Parametric Dependence
- volume fraction
- Stokes number
- size parameter
- Reynolds number

Copyright Lance Collins, 2003
Stokes number dependence

- Graph showing RDF (Redistribution Function) vs. St (Stokes number)
- Different symbols and colors represent different Reynolds numbers:
 - Re = 82.5 (red diamonds)
 - Re = 69.7 (blue triangles)
 - Re = 54.5 (green diamonds)
 - Re = 37.1 (black circles)

- Images labeled (a) to (f) with St values 0.0, 0.2, 0.7, 1.0, 2.0, and 4.0 respectively.
Bi-disperse St dependence

Suppression of off-diagonal collisions broadens the distribution
Size parameter

Copyright Lance Collins, 2003
Physics of clustering

Maxey (1987)

Frame moving with a test particle

Rotation

Strain

Copyright Lance Collins, 2003
Recent Theoretical Developments

 - relative velocity clustering effect

- **Falkovich, Fouxon and Stepanov (2002)**
 - clustering effect in clouds

- **Zaichik & Alipchenkov (2003)**
 - relative velocity clustering

- **Chun, Koch, Ahluwalia & Collins (2003)**
 - clustering \((St \ll 1)\)

 \[
g\left(\frac{r}{\eta}\right) = c_0 \left(\frac{\eta}{r}\right)^{c_1}
\]

\[
c_0 \left(R_\lambda, St, \Phi\right)
\]

\[
c_1 \left(R_\lambda, St, \Phi\right)
\]

Copyright Lance Collins, 2003
\[
\frac{\partial g}{\partial t} = -\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 A \frac{\partial g}{\partial r} \right) + \frac{1}{r^2} \frac{\partial}{\partial r} \left[r^2 B r^2 \frac{\partial g}{\partial r} \right]
\]

\[
A = \frac{St}{3 \tau_\eta} \left(\langle S^2 \rangle_p - \langle R^2 \rangle_p \right)
\]

\[
\frac{\Delta \langle S^2 \rangle_p}{St} = \left[\frac{\sigma_\varepsilon^2}{\varepsilon^2} T_{\varepsilon\varepsilon} - \frac{\rho_{\varepsilon\varepsilon} \sigma_\varepsilon \sigma_\zeta}{\varepsilon^2} T_{\varepsilon\zeta} \right], \quad \frac{\Delta \langle R^2 \rangle_p}{St} = \left[\frac{\rho_{\varepsilon\varepsilon} \sigma_\varepsilon \sigma_\zeta}{\varepsilon^2} T_{\varepsilon\zeta} - \frac{\sigma_\zeta^2}{\varepsilon^2} T_{\zeta\zeta} \right]
\]

Steady State

\[
g(r) = c_0 \left(\frac{\eta}{r} \right)^{c_1}
\]

\[
c_1 = \frac{A}{B} = 6.6 \text{ St}^2
\]

\[
c_1 = 3.6 \text{ St} \left(\langle S^2 \rangle_p - \langle R^2 \rangle_p \right)
\]
Chun et al. (2003) Bidisperse

- Fluid accelerations give rise to relative diffusion

\[g_{AB}(r) = c_0 \left[\frac{\eta^2}{r^2 + r_c^2} \right]^{c_1/2} \]

\[r_c = B' \left| St_A - St_B \right| \eta \]

Copyright Lance Collins, 2003
Reynolds Number Dependence

\[c_1 = 3.6 \text{ St } \left(\frac{S^2}{R^2} \right)_p - \left(\frac{R^2}{S^2} \right)_p \]
Experimental 3D Particle Imaging
Professor Hui Meng

Why 3D?

- Cover a Broader Range of R_λ
- Validate DNS and Theory

Holtzer & Collins (2002)
Preliminary Results

Copyright Lance Collins, 2003
Particle Tracking
Eberhard Bodenschatz and Zellman Warhaft

Wind Tunnel
(active grid)

- Track droplets
 - Multiple (4) cameras
 - High speed (above 50,000 fps)
 - Integral time and length scales
- Measure accelerations
 - Compare with DNS
 - Test theoretical predictions

Droplets
10 - 50 microns

Copyright Lance Collins, 2003
Summary

- **Particle clustering in turbulent flows**
 - Increases collision frequency 1-2 orders of magnitude
 - Strongly favors like collisions; broadens particle size distribution

- **Theoretical predictions for RDF**
 - Stokes number dependence
 - Size parameter
 - Reynolds number dependence remains in dispute (key for cloud physics)

- **Experiments**
 - Validate DNS and theory
 - Increase the range of Reynolds numbers

- **Enabling Technologies**
 - 3D imaging essential
 - Holographic imaging (RDF at an instant)
 - High-Speed Stereoscopic Tracking (Lagrangian statistics)

DNS has continuously guided theoretical and experimental work

Copyright Lance Collins, 2003
Acknowledgments

Colleagues
- Prof. Hui Meng (SUNY-Buffalo)
- Prof. Don Koch (Cornell)
- Prof. E. Bodenschatz
- Prof. Z. Warhaft
- Prof. R. Shaw (Mich. Tech)
- Prof. M. Loewenberg (Yale)

Grad Students and Postdoc
- S. Sundaram (CFD Research)
- W. Reade (Kimberly Clark)
- A. Keswani (Goldman Sachs)
- A. Ahluwalia (Epic Sys.)
- S. Rani

Undergraduate Students
- Carolyn Nestleroth
- Melissa Feeney
- Anthony Fick

NAG3-2470

Copyright Lance Collins, 2003
Future Work

- High-resolution DNS (JC.001)
 - Effect of shear flow
 - Hydrodynamic interactions
- Extend theory to coalescing system
- Experimental measurements
 - HPIV at an instant
 - Lagrangian statistics