GOVERNANCE
2020 APS President Philip Bucksbaum

Philip Bucksbaum holds the Marguerite Blake Wilbur Chair in Natural Science at Stanford University, with appointments in Physics, Applied Physics, and in Photon Science at SLAC. He was also the founding director of the Stanford PULSE Institute. Bucksbaum graduated from Harvard in 1975, and went on to the University of California at Berkeley where he received his PhD in 1980 for atomic parity violation experiments.

Bucksbaum is a Fellow of the APS, the Optical Society, and has been elected to the National Academy of Sciences and the American Academy of Arts and Sciences. He is also the recipient of the 2020 Norman F. Ramsey Prize in Atomic, Molecular and Optical Physics, and in Precision Tests of Fundamental Laws and Symmetries. Within APS he has been active in DAMOP and DLS. He has served as a Laser Science Divisional Associate Editor for Physical Review Letters, he was a member of the Physical Review Letters Advisory Board. (A full bio is available at aps.org/about/governance/leadership/board/president.cfm.)

Q: How did you start out in physics?

In the 1970s, when I was an undergrad at Harvard, there was a lot of excitement in fundamental physics about the Weinberg-Salam model and the fact that the weak interaction and electromagnetism might be two manifestations of the same thing. A number of groups were coming up with ways to test that. In my senior year, I went out to different schools to see where I wanted to go to grad school. At Berkeley, the Commings group was using this cool new technology—tunable dye lasers—to study Weinberg-Salam. It turns out that one of the important tests is searches for parity violation in atomic photo-absorption. So, joining this effort was an easy decision and that’s what I ended up doing for my PhD. I’ve been a laser jock ever since.

At Bell Labs after graduation I took place in what you could do with lasers and precision measurements and I’ve never looked back. I’ve done quite a few different things, but I’ve always been interested in experiments that are closely linked to fundamental physics.

Q: What are you most proud of?

I’m most proud of the people I’ve had the opportunity to work with. I’ve been lucky to have worked with some of the greatest physicists of our time, and I’ve learned a lot from them. I’m also proud of the work that we’ve done on precision measurements, which has helped us understand the fundamental nature of the universe.

A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY

MEETINGS
The APS March Meeting Heads to Denver

By Leah Poffenberger

From March 2 to 6, more than 10,000 physicists from across the country and around the globe will gather in Denver, Colorado, to participate in the world’s largest physics meeting. Across the five-day meeting, attendees will encounter an avalanche of opportunities to present research, collaborate with colleagues, and interact with other physicists from a variety of backgrounds. This year’s APS March Meeting will be held at the Colorado Convention Center—the only convention center with its own 40-foot-tall bear. While attendees will have more than 900 sessions to choose from, the March Meeting will offer a number of special events for early-career physicists, students, and the general public. A highlight of every March Meeting is the Kavli Foundation Special Symposium: This year’s symposium, themed “Frontiers of Computation: Machine Learning and Quantum Computing” will take place on March 4 from 2:30 to 5:30. The invited speakers are Michelle Girvan (University of Maryland, College Park), Eun-Ah Kim (Cornell University) and Roger Melko (University of Waterloo), John Preskill (Caltech), and Patrick Hayden (Google).

Several pre-meeting events will be held on March 1, including short courses hosted by the Division of Polymer Physics, the Topical Group on Data Science, the Topical Group on Statistical and Nonlinear Physics, and the Division of Soft Matter. In addition to six tutorials on topics ranging from noisy quantum devices to advances in medical sensors, the pre-meeting events will include a workshop on creating learning assistant programs, a first-time attendee orientation (5:00 p.m. – 6:00 p.m.), and a meet-up for undergraduate students participating in Future of Physics Days (5:00 p.m. – 7:00 p.m.). After the first day full of scientific talks on March 2, the APS Prizes and Awards Ceremony will take place from 5:45 p.m. to 7:00 p.m. to honor the outstanding achievements of APS members. A Welcome Reception will follow from 5:45 p.m. – 8:00 p.m. On March 3, meeting attendees will have a chance to mingle with editors of the Physical Review journals at the Meet the Editors Reception (4:30 p.m. – 6:30 p.m.). A third reception on March 4, from 7:00 p.m. – 9:30 p.m.—the Diversity Reception—will provide attendees with an opportunity to network while learning about APS diversity efforts led by the Committee on Minorities, the Committee on the Status of Women in Physics and the LGBT+ physics group. Early-career physicists, graduate students, and job seekers will have the chance to attend a lunch-time session on March 2, “Meet Your Future: Careers in the Private Sector,” hosted by the APS.

ETHICS
APS Efforts to Combat Sexual Harassment in Physics

By David Voss

It is clear from a recent report from the US National Academies that sexual harassment is a pervasive problem in the sciences. But a paper published in 2019 in the APS journal Physical Review Physics Education Research presented survey data showing that nearly 75% of women under-graduates studying physics had experienced some form of harassment and a Back Page article in APS News (April 2019) offered personal testimonies of women who had experienced harassment in physics. “Think of this way—one third out of every four women who go to study physics as undergraduates being harassed—this should be shocking to everyone,” said Miriam Deutsch, chair of the APS Committee on the Status of Women in Physics (CSWP). “It’s horrific.”

Catalyzed by these reports, the APS Board of Directors unanimously approved a statement in July 2019 that carried an unequivocal message: “Harassment and discrimination in the conduct of physics is unacceptable” (see page 3 of this issue).

“The statistics are really disturbing. The statement sailed through the APS Panel on Public Affairs and the Board was very pleased with the wording,” said APS CEO Kate Kirby. Such calls for change are only the beginning and the Society has been reinforcing its statements with a variety of tools and actions to promote a culture of respect and safety for all physicists.

The APS’s Core Code of Conduct Policy provides a comprehensive list of expectations for all APS members, including a refusal to allow harassment or discrimination in any APS-related activity. The policy is available: Online: aps.ethicspoint.org Hotline: +1 (844) 660-3924

Going to the APS March Meeting? Read this.

All APS meeting participants must follow the Code of Conduct. Read it here: march.aps.org/about/code-of-conduct.

Need to report something? Use APS EthicsPoint—it is confidential, easy-to-use, and always available: Online: aps.ethicspoint.org Hotline: +1 (844) 660-3924

Copyright © 2020 American Physical Society
Education and Diversity News

2020 Physics Department Chairs Conference: Save the Date

The 2020 Physics Department Chairs Conference, sponsored jointly by AAPT and APS, will be held June 18–20, 2020 in College Park, MD. Registration information will be available in late January at go.aps.org/30jA9t.

2020 PhysTEC Conference

Join PhysTEC from February 29 to March 3 for the nation’s largest meeting dedicated to the education of future physics teachers—featuring workshops on best practices, panel discussions with leading experts, and numerous networking opportunities. Register now (go.aps.org/2Z63tX) to learn more about this conference, which is dedicated to education, to policy advocacy, improving your physics program, and recruiting future teachers.

Communication and Negotiation Skills Seminar for Women

With support from the National Science Foundation (NSF), APS has trained women in physics to conduct professional skills seminars for students and postdocs at APS-sponsored meetings and universities and institutions.

Professional Skills Development Seminars are highly interactive workshops where participants will learn and practice communication and negotiation skills. For more information, please visit go.aps.org/30jA9t.

APS, with NSF support, will be hosting a Professional Skills Development meeting on Friday, April 7th, 2020, at the APS April Meeting. Travel support is available to cover transportation and hotel costs (up to $1,000 per person) for all workshop participants. Registration for the workshop will remain open until capacity is reached. For more information, please visit go.aps.org/30jA9t.

T H I S M O N T H I N

Physics History

February 8, 1967: Joseph Weber Submits First Gravitational Wave Paper to PRL

This month marks the four-year anniversary of LIGO’s groundbreaking announcement of the first direct detection of gravitational waves, ushering in a new era of multi-messenger astronomy. But for decades after Albert Einstein’s general theory of relativity predicted the existence of gravitational waves, physicists assessed it would be impossible to detect them. Joseph Weber was the first to build an antenna, and he had a dream. But to make it work, he had to do just that, and while his claims of detection were later discredited, he helped found the field.

Born to Austrian Jewish immigrants in New York in 1919, Weber’s birthname was Yonah, which later morphed into Joseph. He enrolled at Cooper Union, but his schooling was a financial hardship for the family, and he dropped out to join the US Navy. He served as a radar expert and a navigator, and survived the sinking of the carrier USS Lexington during World War II, later taking command of a sub-chaser for an invasion of Sicily in 1943.

After leaving the Navy in 1948, Weber joined the electrical engineering department of the University of Maryland, earning a PhD in physics in his spare time from Catholic University—a coincidence of his hiring. He chose to study atomic physics and drew on his naval experience working with microwaves to come up with the concept for the detector, outlining his design in a 1952 public lecture in Ottawa.

Among those who read Weber’s paper was Charles Townes, who had been working on a similar concept, as had two Russian scientists, Nikolay Basov and Aleksandr Prokhorov. The maser led to the invention of the laser, and Townes, Basov, and Prokhorov won the 1964 Nobel Prize in Physics for their work. Weber had been nominated but was omitted from the award.

Unfortunately, Weber later told friends that the snub influenced his decision to hunt for gravitational waves, since it was a field that was at an especially difficult time, there would not be much competition.

During his 1955 sabbatical year, Weber studied gravitational radiation with John Wheeler at the Institute for Advanced Study in Princeton and came up with a way to potentially detect these faint ripples in the fabric of spacetime. His detector was known as “Weber bars”: large aluminum cylinders, about two meters long and one meter in diameter, that would vibrate at just the right resonant frequency in response to a passing gravitational wave. The bars were outfitted with piezoelectric sensors capable of detecting minute changes in the length of the cylinders.

The first bar was housed in his laboratory at UMD, with other bars installed roughly a mile from campus in a makeshift garage. Weber placed another bar at Argonne National Laboratory, the better to capture candidate “coincident events” and rule out false signals due to noise. And he devised his own algorithm to analyze the pulses, despite his lack of experience with statistics—a shortcoming that would later contribute to the dismissal of his claims.

Weber submitted a paper to Physical Review Letters on February 8, 1967 (which was published the following month), reporting on the first two years of operation for his experiment. While the paper primarily placed some constraints on gravitational wave detection, he wrote, “The possibility that some gravitational signals may have been observed cannot completely be ruled out.” At a 1969 general relativity conference, he went further and announced success in detecting gravitational waves. It caused a sensation and launched Weber to academic fame. He published a paper in PRL that same year, claiming to have detected around two dozen “coincident events” over 81 days. In 1970 he followed up with another PRL paper claiming detection of 31 such events over 330 days.

The problem was that nobody else ever picked up anything other than random noise when they tried
Ending Sexual Harassment in Physics (July 17, 2019)

assessments and discrimination, the central core of physics is unacceptable. While sexual harassment is understood to be a pervasive problem at all levels (NASEM report), APS leadership is appalled at the results of a recent survey of women under-graduates in physics, which showed that nearly 75% of them experienced some form of sexual harassment during at least one year of college. While not the only reason, it is one of the main reasons why many women do not pursue careers in physics.

As stated in the APS Strategic Plan, 2019, APS is committed to full and respectful participation by everyone. Physics thrives when all participants are treated with respect, so we must act now to end sexual harassment in our discipline.

To broadly uphold the important core values of diversity, inclusion, and respect, and to enable full participation of all physics professionals, we shall all become part of the solution.

We urge all members of the physics community to follow the standards of professional behavior developed by APS members and described in the APS Code of Ethics and Conduct 19.1—Guidelines on Ethics.

We ask that: (1) everyone learn about a variety of forms of harassment; (2) train, in a way that effectively and sensitively, in how to recognize, report, and handle harassment; and (3) develop a major role in the leadership of the Societies Consortium on Sexual Harassment in STEM.

Brewing an Interest in Fluid Science

by ABIGAIL EISENSTAEDT

W eber continued from page 2

to replicate Weber’s experiments. Groups at IBM, Stanford, Bell Labs, Oxford, Cambridge, and in Scotland, Germany, Louisiana, Italy, Moscow, and Washington, DC, all tried to repeat the experiments with their own Weber bar designs—to no avail. IBM’s research was cut off because of the claim publicly at an MIT conference in 1974. Theories concluded that Weber’s observations couldn’t be correct because, as Garwin declared, “The universe would convert all of its energy into thermal radiation in 50 million years or so, if one were really detecting what Joe Weber was detecting.”

By the late 1970s, Weber’s claims of detection had largely been discredited within the physics community. Weber himself was steadfast in his claims, dismissing one colleague who sought a meeting with the words, “You can’t just walk in off the street and do gravitational wave experiments.” His fame faded and few people took him in the conduct of his experiments.

Weber died on September 30, 2000, while being treated for cancer, having continued his experiments until the end of his life. The Weber bar is now displayed at the LIGO facility in Hanford, Washington, in recognition of his role in launching the search for gravitational waves.

“No one else had the courage to talk. Colloids are evenly dispersed in a fluid, stressed Ristenpart in his DFD meeting this past November in Seattle, William Ristepant, a professor of chemical engineering at the University of California, Davis, shared how he and his colleague Tonya Kuhl have successfully created a chemical engineering course designed for engineering novice students as a new kind of study. They entice students to enroll in the course by using a not-so-secret ingredient: coffee.

“The main goal is to teach them that chemical engineering is a way to think about the world quantitatively,” Weber said.

“Coffee’s colloidal concentration may seem more watery,” the course teacher, Meg Ristenpart, said. “But if there are two versions of the class: one for engineering students and one for general education students. The general education course only requires a basic understanding of algebra, while the engineering version is for most undergraduates regardless of training.”

“Students also get to roast great coffee beans. Roasting catalyzes a chemical process known as the Maillard reaction, in which sugars combine with proteins and turn the beans into their familiar brown color.”

“Coffee’s colloidal concentration affects its viscosity, which is sometimes equated as thickness. This is why French press coffee may seem sludgy, while coffee made differently may seem more watery.”

After six weeks of chemical engineering fundamentals taught through grilling, roasting, and brewing coffee beans, Ristenpart and Kuhl challenge their class to complete the final design component of the course. For the final, students compete in groups to brew one kilogram of the best-tasting coffee while using the least amount of total electrical energy. They receive a score calculated by dividing each group’s coffee taste score over their total energy consumption (measured in kilowatt hours). The winners gain “fame, glory, and bonus points,” according to Ristenpart.

As enrollment rates rose for his course, Ristenpart realized that although coffee was popular, coffee science was understudied and underfunded. So, he worked with the University of California, Davis to develop a comprehensive program committed to furthering coffee research in fields like bio-agriculture.

BREWING CONTINUED ON PAGE 7
Physicists Funders Get Budget Boost for FY2020

BY MITCH AMBROSE

Federal agencies that fund physical science programs are receiving budget increases of varying sizes under the spending legislation for fiscal year 2020 that was enacted late last year.

The Department of Energy stands out as among the biggest beneficiaries, with several of its applied energy RD&E programs seeing double-digit percentage boosts. For instance, the Office of Nuclear Energy budget is rising by 22%, making room for a new $3.2 billion program that will support advanced reactor demonstration projects.

Fundamental research is receiving more moderate increases, with funding for the office of Science rising by 6% to an even $7 billion. The office’s annual budget has now grown by nearly $2 billion over the course of the last five years. This year’s increase spreads across its six disciplinary programs, with most seeing increases in the range of 2% to 7%. However, the Fusion Energy Sciences program garnered an increased boost of 19% to accommodate a near doubling of the U.S. contribution to the ITER facility in France, reflecting renewed confidence in the project’s management. Overall funding for non-ITER activities will drop slightly though, squeezing the domestic fusion research portfolio.

The National Science Foundation’s budget is increasing 2.5% to $8.3 billion. The appropriation includes $55 million to launch a new program that will fund construction of midscale research infrastructure. It also includes the $33 million NSF requested to begin its five year, $150 million contribution to detector upgrades at the Large Hadron Collider in Europe, which will prepare them for the upcoming high luminosity upgrade to the collider’s beams. DOE will contribute $800 million to the detector and beam upgrades this year.

The budget for the National Institute of Standards and Technology is increasing 5% to just over $1 billion. Much of the boost is targeted toward quantum information science and artificial intelligence research, areas that Congress and the Trump administration broadly agree on as top priorities.

Quantum science and AI are prioritized across other agencies as well. For instance, Congress directs the DOE Office of Science to allocate $1 billion for quantum information science, a 60% increase over last year. The amount includes $55 million for establishing up to five research centers, as called for in the law that launched the National Quantum Initiative. NSF is directed to allocate $50 million for standing up its share of the research centers required under the initiative.

President Trump is scheduled to release his budget request for fiscal year 2021 on Feb. 11. Although Congress is apt to reject any proposals to slash science spending, it as has for Trump’s past budget requests, it will face difficult choices this year in how to allocate any increases. Under a bipartisan budget agreement reached last year, caps on federal spending on quantum information science and artificial intelligence research by fiscal year 2023. The plan would also detail options for increasing R&D investment in those areas as well as biotechnology, advanced manufacturing, and next-generation communications to $10 billion over the next five years.

The author is Acting Director of FYI.

FYI has been a trusted source of science policy and funding news since 1989 and is read by members of Congress and their staff, federal agency heads, journalists, and US scientific leaders. Sign up for free FYI emails at aip.org/fyi.
actions. “Our Code of Conduct is very important as is the reporting system for cases of misconduct. We’ve received a lot of feedback that people are pleased with the outcomes so far, but I’m concerned that women still feel reluctant to report these things due to the negative emotional and social consequences,” she says.

Among the activities in place or underway are:

- APS EthicsPoint: All participants in APS meetings must adhere to a Code of Conduct, which states it is not to promote or condone behavior of any kind that will not be tolerated. Harassment includes but is not limited to inappropriate or intimidating behavior, unwanted sexual attention,�

- APS EthicsPoint Violations. Violations of the Code of Conduct can and should be reported by anyone via an EthicsPoint portal to provide a comprehensive and completely confidential way to submit reports. These reports may be submitted online or by telephone. As stated in the EthicsPoint guidelines, “We take these reports very seriously. These reports are made available only to specific individuals within [APS] who are charged with investigating them and determining if these reports are within the utmost confidence.” To file a report, call 1-824-660-9624 or go to aps.ethicspoint.com.

- Societies Consortium on Sexual Harassment in STEMM: APS is one of the inaugural members of the Societies Consortium on Sexual Harassment in STEMM, with APS Director of Programs Monica Flisch representing the Society on the consortium’s leadership council (APS News, July 2019). The consortium provides model policies, policy–law guidance, and practical tools to advance professional and ethical conduct, climate and culture in societies’ own operations and STEMM fields broadly, in support of “Envisioning all talent and excellence in the fields. (education-counsel.org/societiesconsortium.)”

- Legislation. APS, through its Office of Government Affairs, has been a leader in the efforts to enact legislation that helps US federal agencies combat sexual harassment in STEM. An example is the bipartisan Combatting Sexual Harassment in Federal Agencies Act, which would establish an Interagency Working Group to coordinate efforts to reduce sexual harassment, direct the NSF to award grants to institutions researching sexual harassment in the sciences, and require annual reports on progress, redaction, and reduction, and require updates to the Academies report “On Being A Scientist: Promoting an Ethical Code of Conduct in Research” (aps.org/policy/issues/harassment.cfm).

- A number of ethics-related matters, but two items are underway.
 - We want to do a follow-up to a survey we did 15 years ago,” says Marder. “Back then, nearly half of the early career physicists responded, many within a few hours, to a survey we thought something big was happening. We want to know if things have changed—better, worse, or the same.”
 - The other item is what do about members who have committed harassment. APS has included new draft policies on inelegibility for awards and revocation of honors or membership, but we don’t have that in the handbook or published guidance.

- APS Guidelines on Ethics. In April, 2019, APS has issued a new statement on ethics, which emphasizes that “The success of the scientific enterprise rests upon two ethical pillars. The first of them is the obligation to tell the truth, which includes avoiding fabrication, falsification, and plagiarism. The second obligation is the obligation to treat people well, which prohibits specific forms of racism and xenophobia.”

- Site visits. Since the 1990s, APS has conducted on-site Minority Site Visits, which have been successful, based on the type of violation and location of the incident. Each of these report recipients has had tons of feedback that are in the utmost confidence.” To file a report, call 1-824-660-9624 or go to aps.ethicspoint.com.

- APS Ethics Point. Violations of the Code of Conduct can and should be reported by anyone via an EthicsPoint portal to provide a comprehensive and completely confidential way to submit reports. These reports may be submitted online or by telephone. As stated in the EthicsPoint guidelines, “We take these reports very seriously. These reports are made available only to specific individuals within [APS] who are charged with investigating them and determining if these reports are within the utmost confidence.” To file a report, call 1-824-660-9624 or go to aps.ethicspoint.com.

- Societies Consortium on Sexual Harassment in STEMM: APS is one of the inaugural members of the Societies Consortium on Sexual Harassment in STEMM, with APS Director of Programs Monica Flisch representing the Society on the consortium’s leadership council (APS News, July 2019). The consortium provides model policies, policy–law guidance, and practical tools to advance professional and ethical conduct, climate and culture in societies’ own operations and STEMM fields broadly, in support of “Envisioning all talent and excellence in the fields. (education-counsel.org/societiesconsortium.)”

- Legislation. APS, through its Office of Government Affairs, has been a leader in the efforts to enact legislation that helps US federal agencies combat sexual harassment in STEM. An example is the bipartisan Combatting Sexual Harassment in Federal Agencies Act, which would establish an Interagency Working Group to coordinate efforts to reduce sexual harassment, direct the NSF to award grants to institutions researching sexual harassment in the sciences, and require annual reports on progress, redaction, and reduction, and require updates to the Academies report “On Being A Scientist: Promoting an Ethical Code of Conduct in Research” (aps.org/policy/issues/harassment.cfm).

- A number of ethics-related matters, but two items are underway.
 - We want to do a follow-up to a survey we did 15 years ago,” says Marder. “Back then, nearly half of the early career physicists responded, many within a few hours, to a survey we thought something big was happening. We want to know if things have changed—better, worse, or the same.”
 - The other item is what do about members who have committed harassment. APS has included new draft policies on inelegibility for awards and revocation of honors or membership, but we don’t have that in the handbook or published guidance.

- APS Guidelines on Ethics. In April, 2019, APS has issued a new statement on ethics, which emphasizes that “The success of the scientific enterprise rests upon two ethical pillars. The first of them is the obligation to tell the truth, which includes avoiding fabrication, falsification, and plagiarism. The second obligation is the obligation to treat people well, which prohibits specific forms of racism and xenophobia.”

- Site visits. Since the 1990s, APS has conducted on-site Minority Site Visits, which have been successful, based on the type of violation and location of the incident. Each of these report recipients has had tons of feedback that are in the utmost confidence.” To file a report, call 1-824-660-9624 or go to aps.ethicspoint.com.

- Societies Consortium on Sexual Harassment in STEMM: APS is one of the inaugural members of the Societies Consortium on Sexual Harassment in STEMM, with APS Director of Programs Monica Flisch representing the Society on the consortium’s leadership council (APS News, July 2019). The consortium provides model policies, policy–law guidance, and practical tools to advance professional and ethical conduct, climate and culture in societies’ own operations and STEMM fields broadly, in support of “Envisioning all talent and excellence in the fields. (education-counsel.org/societiesconsortium.)”

- Legislation. APS, through its Office of Government Affairs, has been a leader in the efforts to enact legislation that helps US federal agencies combat sexual harassment in STEM. An example is the bipartisan Combatting Sexual Harassment in Federal Agencies Act, which would establish an Interagency Working Group to coordinate efforts to reduce sexual harassment, direct the NSF to award grants to institutions researching sexual harassment in the sciences, and require annual reports on progress, redaction, and reduction, and require updates to the Academies report “On Being A Scientist: Promoting an Ethical Code of Conduct in Research” (aps.org/policy/issues/harassment.cfm).

- A number of ethics-related matters, but two items are underway.
 - We want to do a follow-up to a survey we did 15 years ago,” says Marder. “Back then, nearly half of the early career physicists responded, many within a few hours, to a survey we thought something big was happening. We want to know if things have changed—better, worse, or the same.”
 - The other item is what do about members who have committed harassment. APS has included new draft policies on inelegibility for awards and revocation of honors or membership, but we don’t have that in the handbook or published guidance.

- APS Guidelines on Ethics. In April, 2019, APS has issued a new statement on ethics, which emphasizes that “The success of the scientific enterprise rests upon two ethical pillars. The first of them is the obligation to tell the truth, which includes avoiding fabrication, falsification, and plagiarism. The second obligation is the obligation to treat people well, which prohibits specific forms of racism and xenophobia.”

- Site visits. Since the 1990s, APS has conducted on-site Minority Site Visits, which have been successful, based on the type of violation and location of the incident. Each of these report recipients has had tons of feedback that are in the utmost confidence.” To file a report, call 1-824-660-9624 or go to aps.ethicspoint.com.
PhysTEC congratulates these universities and colleges for graduating 5 or more physics teachers in the 2018-2019 academic year.

The 5+ Club 2018-2019
Brigham Young University (6)
Brigham Young University - Idaho (7)
California State University, Long Beach (5)
Illinois State University (5)
Rutgers, The State University of New Jersey (5)
Stony Brook University (5)
University of Central Florida (6)

Learn more: phys.tec.org/the5plus
skills are also highly valued in PhD research is often a rather issue is differences in the set of company."

The annual March Meeting Job Expo will be held on March 2 from 12:00 to 1:00 p.m. and March 4 from 10:00 to 1:00 p.m. Undergraduate students will have the chance to participate in Future of Physics Days (FPD) events, sponsored by APS and Physics Students (SPS). FPD offers students the opportunity to present research, learn about graduate schools and careers, and network with others in the scientific community. An event on March 2, Connecting with Success:

MARCH CONTINUED FROM PAGE 1

Forum on Industrial and Applied Physics and the APS Careers team invite you to join us at the APS March Meeting, March 1-5, 2020, at the Denver Convention Center. The annual March Meeting Job Expo will be held on March 2 from 12:00 to 1:00 p.m. and March 4 from 10:00 to 1:00 p.m. Undergraduate students will have the chance to participate in Future of Physics Days (FPD) events, sponsored by APS and Physics Students (SPS). FPD offers students the opportunity to present research, learn about graduate schools and careers, and network with others in the scientific community. An event on March 2, Connecting with Success:

JOB HUNTING CONTINUED FROM PAGE 5

networking and engagement with the latest fundamental physics research.

The reasons for the disconnect between the traditionally academic world of APS and the industrial physics arena are many. In large part this has to do with stark differences in the culture of graduate school versus the private sector, according to FIAP chair Ichiro Takeuchi, professor of materials science and engineering and affiliate professor of physics at the University of Maryland and co-founder of a startup focused on solid-state cooling technology.

"Physics prides itself on being a pure science and the philosophy in graduate school emphasizes generating original findings," he explained. "The questions of highest academic interest are not necessarily in line with the questions that most need answering in industry."

In short, "pursuing pure physics is orthogonal at some level to making better iPhones."

This sentiment was echoed by Steven Lambert, an industrial physicist with 25 years of experience in the field. "In my book, physics serves as the Industrial Physics Program Manager for APS—a position specified for programs to engage physicists in industry (see APS News December 2019). "Some students are told that pursuit of pure knowledge is the highest good, so it may remove any chance of focus to work on the urgent problems facing a company."

According to Lambert, another issue is the presence of a culture that implies technical skills are not necessarily valued in industry, and some students are not ready for that." FIAP exists to bridge this gap, helping APS better meet the needs of the industrial physics community and promoting awareness of the many career options for physicists.

APS NEWS

For more information on the 2020 March Meeting and the full scientific program, please visit march.aps.org.

BY MATTHEW SALTER AND MICHAEL THOENENESSEN

F or the past 127 years, the Physical Review journals, published by the American Physical Society, have existed to serve the global physics and physics-related research community. Since their inception in 1893 the journals have set the standard for excellence in scholarly publishing and have continuously evolved to meet the changing needs of authors and readers, introducing innovations such as Reviews of Modern Physics (1939)—the world’s most cited physics reviews journal—and Physical Review Letters (1958)—the world’s most cited physics journal.

In 2020, we commemorate the 50th anniversary of the launch of Physical Review A-D—another major evolution of the Physical Review journals portfolio in the service of the research community—and will celebrate the proud heritage of our journals as well as looking to the next 50 years of the Physical Review Journals. To celebrate, amongst other activities we plan to:

• Feature landmark articles: Throughout the year each journal will highlight on its website influential papers from its long history.

• 50 for 50 Discount: For articles submitted in 2020, APS is offering a 50% reduction of article processing charges (APCs) for authors wishing to publish open access in the prestigious titles Physical Review A-E. This offer also extends to Physical Review Letters as well as the more recently launched sister journals Physical Review Applied, Physical Review Fluids, and Physical Review Materials.

• Engage the Next Generation: The future of scientific publication rests with the communication preferences of the future scientists. Thus, we will hold author engagement sessions for early career scientists at APS and other major meetings around the world to collect input and feedback to continue to optimally serve the community in the future.

“...data was also welcomed by researchers and librarians alike for making it easier to lift printed volumes on and off library shelves.”

The last volume of The Physical Review was a behemoth several inches thick.

The portfolio has continued to grow and diversify with the launch of the pioneering open access journal Physical Review X—a 50% reduction in article processing charges (APCs) for authors wishing to publish in the prestigious titles Physical Review A-E. This offer also extends to Physical Review Letters as well as the more recently launched sister journals Physical Review Applied, Physical Review Fluids, and Physical Review Materials.

Over the last 50 years Physical Review A, B, C, and D have established an excellent reputation for quality and integrity continuing the tradition of the original Physical Review. As with other journals in the portfolio, they are well respected in the community because of their high quality peer review and professional, fast, and efficient editorial handling. The editors and staff of the Physical Review journals are committed to continuing this tradition in the future. We will continue to publish enduring discoveries and tomorrow’s advances in fulfillment of the mission of the APS: “In advance and diffuse the knowledge of physics for the benefit of humanity, promote physics, and serve the broader physics community.”

Matthew Salter is APS Publisher and Michael Thoennessen is APS Editor in Chief.