The Nation Needs More Women Physicists

APS Gender Equity Workshop
May 6, 2007
Arthur Bienenstock
Scientific and Technological Workforce - View From OSTP – 1997-8 - 1

- Perception that science & technology very important to economy
 - Over 50% of productivity increase over past half century ascribed to science and technology
- Very low unemployment rate
- Statements that unavailability of science and technology workers is limiting economic growth
- Requests for increases in H-1B visas
Growth in Fraction of Total U.S. Workforce Employed in ST&E

- 1962 - 11%
- 1995 - 15%

(OSTP analysis of Bureau of Labor Statistics statistics)
BLS Projections - Job Growth

• Professional specialty occupations
 – Includes scientists, engineers, medical personnel
• 1986-1996 - Grew by 34%
• 1996-2006 - Projected growth - 27%
• Ten specific occupations with highest projected growth
 – 6 - health-related
 – 4 - computer-related
Percent of 22 Year Olds Earning Science & Engineering Degrees - 1995

- African-Americans - 5.7
- Asians - 21.6
- Hispanic - 4.8
- non-Hispanic White Females - 11.8
- non-Hispanic White Males - 13.8
Projections of Future Situation

• **If** participation rates of all the groups remain the same and demographic projections are correct,

• **then** fraction of workforce that is ST&E will decrease significantly at time when increase is likely to be needed.
Calculated Fraction of 22 Year Olds Receiving Bachelors Degrees in Science & Engineering if Award Rates of Various Groups Remain Constant

Figure 1-4.
Immigration & the ST&E Workforce - 1995

• 12% of people in U.S. holding S&E bachelor’s degrees were naturalized citizens or non-U.S. citizens

• Would have to increase immigration significantly to hold ST&E fraction of workforce constant if don’t increase domestic participation rates

• Nations providing immigrants are building their own ST&E workforces and economies
Basic Conclusion

• Must remain attractive for immigration
• Must increase participation rates of all groups in ST&E
• Under-represented minorities, women and persons with disabilities represent largest potential pools
There has been progress
H-1B Visa

• H-1B Visa Caps
 – 65,000 Standard
 – Additional 20,000: “Advanced Degree Exemption Category”
 • Designated for M.S. & Ph.D. recipients from U.S. universities
 – Reached application limit in one day

From Amy Flatten's talk at 4-07 APS Council on International Affairs
Women in Physics and Astronomy, 2005

Rachel Ivie and Kim Nies Ray

Highlights

- The representation of women in physics and astronomy at all levels continues to increase. At the high school level, almost half of high school students are girls (Figure 1), although fewer girls take AP physics in high school. During 2003, women earned 22% of the bachelor's degrees in physics and 18% of the PhDs in physics—a record high (Figure 1). In astronomy in 2003, women earned 40% of bachelor's degrees and 35% of PhDs (Figure 2).

- Astronomy has a much higher representation of women than does physics. Although the percentage of degrees awarded to women in physics continues to increase, physics is not attracting women as quickly as other fields (Figures 7 and 8).

- There are 18 physics departments that award at least 40% of their bachelor's degrees to women (Table 2). There are 10 physics departments that award more than 25% of their PhDs to women (Table 4). There are at least 19 women's colleges that award at least a bachelor's degree in physics, although these colleges account for only a small percentage of bachelor's degrees in physics earned by women (Table 3).

- Women are 10% of the faculty members in degree-granting physics departments (Table 6). In standards astronomy departments, the percentage of women faculty members is 14% (Table 5). In addition, women are better represented at departments that do not grant graduate degrees and in the lower ranks of the faculty.
Figure 2. Girls as a percentage of total enrollment in high school physics over time.

U.S. Bachelors Degrees in Physics Show Dependence on Women
Figure 8. Percent of bachelor's degrees earned by women in selected fields, 1966-2001.

Figure 7. Percent of PhDs earned by women in selected fields, 1958-2003.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Full professor</td>
<td>3</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Associate professor</td>
<td>8</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Assistant professor</td>
<td>12</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>Instructor/Adjunct</td>
<td>N/A</td>
<td>N/A</td>
<td>16</td>
</tr>
<tr>
<td>Other ranks</td>
<td>8</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Department</th>
<th>1994</th>
<th>1998</th>
<th>2002</th>
</tr>
</thead>
<tbody>
<tr>
<td>PhD</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>Master’s</td>
<td>7</td>
<td>9</td>
<td>13</td>
</tr>
<tr>
<td>Bachelor’s</td>
<td>7</td>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>Overall</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
</tbody>
</table>

Figure 11. Actual and expected percentage of women and men in physics in the US.

- **Actual 2001, 2002**
- **Expected** is based on percent bachelor's degrees in the past

AIP Statistical Research Center.
How Meet Nation's Needs?

• Increase participation of woman by making physics more attractive for secondary school, B.S. and M.S. students

• Team with schools of education to produce high quality secondary school teachers of physics
 – Heavy emphasis of APS on PhysTEC and PTEC

• Encourage women to study physics and be physicists
 – Women faculty
 – Taking maternity and child-care into account
 – Gender equity