REPORT ON THE JANUARY 1988 CSWP SYMPOSIUM

In January the Committee on the Status of Women in Physics and the Committee on Opportunities in Physics presented a symposium on “Career Re-entry/Retraining: Opportunities for the Midlife Physicist in Transition” at the Joint Meeting of the American Physical Society (APS) and the American Association of Physics Teachers (AAPT). Joan S. Kowalski of George Mason University chaired the session and presented an overview of the topics to be discussed. According to Dr. Kowalski, the number of students between 18 and 22 years old will decline through the year 2000. Offsetting this decline are women returning to the work force, older students, and foreign students. The purpose of the symposium was to provide information that would aid these groups to establish or continue a career in physics.

Israel S. Jacobs of General Electric reviewed information about the job opportunities and workforce statistics pertinent to new and re-entrant midlife physicists. The statistics presented were based on surveys of members of APS and AAPT. Of these members, 5% of APS members are women vs. 7.5% of AAPT members. Dr. Jacobs first described the backgrounds of members of both organizations. Surveys show that APS members:

- hold Ph.D.s (89%),
- work for academic (42%) or industrial (31%) organizations,
- consider their primary work activity to be basic research (30%), teaching (20%), applied research (21%), design/development (11%), or administrative/other (18%),
- consider their field of work to be physics (71%), engineering (12%), or other science (12%).

AAPT members:

- hold as their highest degree, a Ph.D. (58%) or M.S. (35%),
- work for universities (33%), four-year colleges (18%), junior colleges (10%), secondary schools (25%),
- consider their primary work activity to be basic research (6%), teaching (73%), applied research (4%), design/development (8%), administrative/other (12%).

Areas of concern and factors affecting the demand, supply, and type of physics jobs available are as follows:

- fewer disadvantaged students are continuing their educations,
- 40% of physics graduate students are foreign students,
- relatively more women and minorities favor theoretical specialties than men,
- more experimental physics jobs are available than theoretical (79% of industrial jobs are experimental); experimental specialties having more jobs include condensed matter, atomic, molecular, optical, and plasma physics,
- only 57.9% of physics/astronomy graduates continue to work in physics or astronomy (low in comparison with other fields),
- the retention rate for physics subfields ranges from mathematical physics (26%) to medical physics/optics (91%),
- the median age of physicists is 45 (42 years of age for industry and 47 for university),
- a shortage of secondary physics teachers exists today,
- higher admission standards for universities have an adverse effect on the supply of physicists.

Current projections indicate that the overall demand for physicists should exceed supply in the 1990s. In general, the demand for physicists will be concentrated in experimental fields.

The second speaker was Marie Machacek of Northeastern University (N.U.) who described programs N.U. has for upgrading and retraining women and men for physics, chemistry, engineering, and information systems. The programs described were developed to address the declining and inadequate number of well-trained and skilled people available in the job market. To remedy this situation, Northeastern has focused more attention on older students and their needs.
Members of the Committee

Chair
Ellen Zweibel
University of Colorado

Past Chair
Joan S. Kowalski
George Mason University

Maha Ashour-Abdalla
IGPP/UCLA

Janice Button-Shafer
University of Massachusetts

Patricia M. Dehmer
Argonne National Laboratory

Melissa E. Franklin
Harvard University

Shirley A. Jackson
AT&T Bell Laboratories

Robert S. Knox
University of Rochester

Kenneth B. Lyons
AT&T Bell Laboratories

Frank McDonald
NASA, Goddard Space Flight Ctr.

APS Liaison
Miriam A. Forman
SUNY, Stony Brook

Amy Halsted
APS Staff

AAS Liaison
Diedre Hunter
Lowell Observatory

The “CSWP GAZETTE,” a quarterly newsletter of the American Physical Society Committee on the Status of Women in Physics (CSWP), is mailed free of charge to all women listed on the computerized “Roster of Women in Physics,” all US physics department chairs, and others on request. Because editorial responsibility rotates among CSWP members, please address all correspondence to: “CSWP Gazette,” The American Physical Society, 335 East 45 St., New York, NY 10017.

In the early 1980s, the National Science Foundation (NSF) funded a pilot program to facilitate women's entry into chemistry and physics. The program combined a set of refresher mini-courses in math and science with the usual university program. The pilot program was completed in 1983. Overall, the program was successful. All twenty-five people admitted to the program (out of 400 applicants) completed the requirements. Evaluation of the pilot found that the women tended to lack confidence after being out of school a few years and needed retraining in academic/study skills. In addition, they needed to budget their time and make family adjustments to meet the demands of the program. Participants possessed certain advantages.

They had a high level of motivation, focused on goals, interacted well with faculty, and adjusted quickly to the demands of the program.

The curriculum was judged to have been flexible enough to meet individual needs, but the math and science refresher courses were too short. The program did provide valuable hands-on experience with computers, electronics, laboratory work, and design projects. One essential component of the program was the availability of financial aid. Career counseling was available to participants but was seldom used. Areas for improvement included standardization of requirements and improvement of job placement.

Additional programs exist to help men and women obtain advanced education in engineering and information systems. These programs were oriented toward meeting the needs of local business, and in the case of the information systems department included a work/study program.

Two women spoke about "What the Physicist in Transition Can Do for Herself." Jean Toth-Allen of George Mason University addressed re-entry issues. Dr. Toth-Allen had earned a Ph.D. in biophysics but left her field to raise a family when research money became scarce. Re-entry into physics was further delayed by job transfers relating to her husband's career.

After several years out of the job market, Dr. Toth-Allen's concerns included the currentness of her training, the difficulty in learning about job opportunities in her field, and the challenge of convincing an employer to hire someone who has been out of the job market. In her efforts to find a position in her field, Dr. Toth-Allen tried the traditional strategies of networking and job placement services.

The step she took that resulted in her current position at George Mason University was not a traditional one. Dr. Toth-Allen attended a job re-entry program offered in Fairfax County, Va. In this program, she was advised to attend a workshop at which she made a contact which led to part-time employment in the George Mason University Physics Department. The opportunity to get involved in teaching provided a good re-orientation to her field, helped her rebuild her confidence and eventually led to a permanent position with the school.

The final speaker discussed her experiences in making the transition to physics after having established a career in a different field. Margot Durret of AT&T Bell Laboratories described how she arrived at the decision to go back to school and pursue a physics career. The decision-making process included the identification of personal and family goals, job opportunities, and career-related issues that determined her level of interest in physics, the sacrifices she was willing to make, and the risks she was willing to take. An important component to planning a physics career is to set short-term, intermediate, and long-term goals which are re-examined and adjusted as circumstances change.

Ms. Durret described the steps she took and the help received from various sources. These included: researching information about physics careers in existing literature, speaking with physics professors and scientists who were willing to describe their experiences, and joining professional societies which provided a forum for meeting physicists and getting involved in the field.

Obstacles to making a mid-career transition to physics include the small number of women in physics, the difficulty of combining work and school, and the sense of isolation felt when taking courses part-time and not living on campus. Ms. Durret ended by emphasizing the importance of career planning, setting goals, and periodically revising objectives to reflect changing circumstances.

The session on Re-entry and Retraining concluded with a reception which encouraged discussion between participants and members of the audience.

M. Durrett
AT&T Bell Laboratories
Room 14C-359
Whippany Road
Whippany, NJ 07981-0903
(201) 386-2579

LETTERS TO THE EDITOR

Dear Dr. Forman:

I am impelled to answer Laura M. Hinkelmen's letter (December 1987)
because it is so important that women with a conscience not drop out of physics. One reason among others for the diversion of physics away from socially useful applications is the scarcity of physicists with a strong moral sense. Our culture of a war economy saddled by greed forces applications of science which Ms. Hinkelman cannot approve. Physics is not alone. Biology and chemistry serve military purposes; the space program has been diverted from its scientific goals. Star Wars consumes excessive amounts of money and scientific personnel. Even the great technology of television is used mainly for the stultification of the populace and the brutalization of children.

Recognition of all this need not lead to despair. Moral action can influence events. Television has its Sesame Street, biology its medical applications, chemistry its betterment of living. What one can do, as a physicist, depends on how quickly one wants to see results. In the same December issue there is an appeal for APS Congressional Scientist Fellows. Informed congressmen can help turn things around. Another worthwhile endeavor is helping the general public through education in physics, to judge issues in which their fate is involved. So is research in areas which defend the ecology, promote health, seek new energy sources. To stay in pure physics may be harder to defend, except that the better one's training, the more one's influence.

My generation of physicists was forced to grapple with this problem after Hiroshima. A few of us left physics; most stayed. Physicists then fought to keep atomic energy in civilian hands. Every physicist of conscience who leaves the field weakens the forces for good. Profound issues are at stake; they cannot be left to the indifferent and the unknowing.

Sincerely,
Selma Blazer Brody
Ph.D. 1942
19 April 1988

Dear Editor:

This is in response to a letter from Laura M. Hinkelman which appeared in the December 1987 issue of the CSWP Gazette. She expresses concern about the moral issues in certain physics jobs. For individuals who feel they would like to use their physics backgrounds to directly benefit humanity I believe the field of Medical Physics is worth serious consideration. This rapidly growing field needs dedicated people with strong physics backgrounds. There are research-type jobs that involve little direct communication with patients and other jobs that are strongly clinically oriented. Training in Medical Physics for people who already have physics degrees is available at a number of institutions, many of which advertise in Physics Today. Interested parties could contact the American Association of Physicists in Medicine at 335 East 45 St., New York, NY 10017.

Sincerely yours,
Dr. Arlene J. Lennox
Department Head
Fermilab Neutron Therapy Facility
25 February 1988

Dear Editor:

In response to the letter from Laura M. Hinkelman, "Careers in Physics: Ethical Choices," (Volume 7, Issue 4, December 1987), I would like to bring to her attention a publication by Professor Charles Schwarz of the University of California at Berkeley. Professor Schwarz has published a booklet, "Career Information for the Socially Responsible Physics Student" which might be useful to Laura and all of us who wrestle with the problem of guiding science and engineering students to careers that are compatible with their value choices. It is a publication that helps to inform people about the extent of military research in science and technology, even in academic institutions, and can be obtained from:

Charles Schwarz
Professor of Physics
University of California
Berkeley, CA 94720

Thank you.

Sincerely,
Indira Nair
Associate Department Head
Department of Engineering and Public Policy
Carnegie-Mellon University
Pittsburgh, Pennsylvania
9 February 1988

Dear Editor:

Some time ago there was a suggestion in the CSWP Gazette that women who had left the workplace and later re-
turned write of their experiences. I didn't get to it then, but recently I received an inquiry from a young (30) woman who had read the brief biography accompanying a paper on which I was a coauthor and wondered how I "did it." So I'm revising my response for you.

After receiving my M.S. in Physics I worked for ten years in the Solid State Division at the Naval Ordnance (now Surface Weapons) Laboratory and then left to be married. When I decided to go back to work after 18 years I considered several different things, but soon realized that something technical was the only field that I wouldn't find boring and would suit me. Local branches of companies like IBM and HP weren't interested so I concentrated on the Bureau of Standards since I had "status" (previous time) with the government. After nearly a year and frequent trips to the personnel office an opening turned up, there were hardly any openings for physicists during that time. Since neither they nor I really knew what I could do, I started in a temporary appointment at the same grade level at which I started after receiving my M.S.

There certainly had been a lot of developments since I resigned, in fact, the Josephson effect was discovered during the time I quit, and computers were just coming into general use. So there were lots of new things to learn. Although I haven't done very well with the theory of Josephson junctions and the associated cryoelectronic circuits, I do seem to get along well in the laboratory and that is what was, and still is, needed. I've learned to help design and layout patterns using a computer program, make masks, use photolithography and run vacuum systems to fabricate multilayer superconducting chips of a lot of different types of circuits. For the last several years I've worked on the new 1 volt voltage standard (and a 10 volt standard is coming along). I've also helped with testing on occasion. So it's been satisfying to be able to see things through from start to finish and, being the main person doing fabrication, my name has appeared on quite a few papers.

I've never worried about "equal rights," but actually, being a woman was some help in obtaining this job and retaining (thanks to EEO) my previous one when there was a large RIF. Even now I
would think women have an advantage if they leave the working world to stay home with their children as raising children is an acceptable reason for being "unemployed" for a sizable period of time. It also seems to me that if one has the inclination and education for scientific work that it is easy to "restart" though it may take some time to feel reestablished. I was asked several times if I minded doing something different than I had before, as it turns out, I like this work better. My only regret is that I haven't made more effort to understand the physics of this field, my math failed me and the lunchtime review course I took wasn't enough. Actually, though, I've had plenty to keep me busy. Now I'm planning to retire in about a year (after I sell my house!).

I do feel that I was fortunate to find a satisfying job I could do and to work with a very nice group of people who seem to appreciate my efforts (and have given me promotions).

I enjoy reading the CSWP Gazette and when I retire I will send you my new address in hopes that you will continue to send it.

Sincerely,
Frances L. Lloyd
National Bureau of Standards
Boulder, Colorado
12 January 1988

Dear Editor:

I am responding to your request for comments concerning companies arrangements for parental leave and child care. I think it is an excellent idea to collect and disseminate this information. Perhaps when we unite and become a strong voice more companies will be responsive to the needs of women scientists and engineers.

I work for Texas Instruments in Dallas, Texas. There is no company provision for day care. In fact, children under the age of 12 are not permitted on the work site. There is no company set maternity leave policy. Maternity leave is treated as a medical leave of absence. Up to eight weeks of leave, either totally or partially paid (depending on how long one has been with the company) are given. Time taken off before the birth of a child is regarded as personal leave and is unpaid. An employee is guaranteed a job of similar status, pay, and seniority on returning from a maternity leave.

There is some flexibility for professionals in the research laboratory in terms of the times which they come in and leave.

A professional is pretty free to come in any time between 7 and 9 a.m. and leave anytime between 4 and 6 p.m. In production and manufacturing areas, professionals have the flexibility of perhaps finding a position on a different work shift. In this way, a mother and a father could work on different shifts and therefore limit the need for paid child care.

In general, my experience has been that industry is fairly slow to respond to the needs of women scientists and engineers. This is largely because while there is an increasing number of women engineers and scientists employed by industry, most women are congregated in low entry level positions and not in managerial or policy-making positions.

I would be very interested in learning how other women engineers and scientists respond to this question. I understand that CATALYST has compiled quite a bit of information on employees who provide on-site and off-site day care benefits.

Yours sincerely,
Dr. Birgit Lohmann
Physics Programme
Murdoch University
Western Australia
17 February 1988

Name withheld by request.

THE BOTTOM LINE

Last February CSWP received the following letter from a valiant woman physics student, who ran into a Catch-22 in pursuing her studies:

"I am currently enrolled as a physics major at --- State University. I am a returning adult student, being of age 40. At present I have junior status. Last year I received an Honors Scholarship for the sum of $1000. I so far have been able to maintain all A's. One of the conditions I must meet in order to retain the scholarship is to carry a minimum of 25 semester hours a year. I have found this impossible to do, and continue to do the quality of work I am capable of. I am married and have three children still at home and must drive a good distance to campus. Trying to make all of this work has proved to be unrealistic. I therefore must cut back my course load to 10 hours this semester. Of course this means I will forfeit my scholarship. I am hoping there is money available to me from other sources my college financial aid office is not aware of. My plan is to continue on to graduate work, but I feel I must pace myself reasonably so as not (continued on page 5)
PHYSICS COLLOQUIUM
SPEAKERS LIST

compiled by the

COMMITTEE ON THE STATUS
OF WOMEN IN PHYSICS

April 24, 1988

Sec. I: Speakers by geographic area, with address and phone numbers.

Sec. II: Talk titles by physics subfield, with speakers' names and affiliations.
I. PHYSICS COLLOQUIUM SPEAKER INFORMATION, 1988/1989

This first section lists speakers, with addresses and phones, by geographic area (alphabetically within each subsection), together with references to the sections where talk titles appear. The ** identifies those listed in the section for GENERAL AUDIENCES. The section abbreviations in brackets are used for reference in the second section.

NORTHEAST [NE]

* Prof. Karen Barad
 Columbia Univ./Barnard College, Physics Dept
 New York, NY 10027
 (212) 280-5102
 NUCLEAR AND PARTICLE PHYSICS

Prof. Jill C. Bonner
 Univ. of Rhode Island, Phys. Dept
 Kingston, RI 02881
 (401) 792-2533
 CONDENSED MATTER PHYSICS

* Dr. Eva Bozoki
 Brookhaven National Lab, Bldg 725C
 Upton, NY 11973
 (516) 751-8128
 NUCLEAR AND PARTICLE PHYSICS

* Prof. Janice Button-Shafer
 Univ. of Massachusetts, Physics Dept
 LOR Tower C, Amherst, MA 01003
 (413) 545-2140
 ENVIRONMENTAL & ENERGY PHYSICS
 NUCLEAR AND PARTICLE PHYSICS

Dr. Ling-Lie Chau
 Brookhaven National Lab, Physics Dept
 Bldg 510A; Upton, NY 11733
 (516) 282-3768
 NUCLEAR AND PARTICLE PHYSICS

* Dr. Deborah D. L. Chung
 SUNY, Dept. of Mech. & Aerospace Eng.
 613 Furnas Hall; Buffalo, NY
 (716) 636-2520
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS

Prof. Jolie A. Ciszewski
 Rutgers Univ., Seriv Physics Lab
 PO Box 849; Piscataway, NJ 08854
 (201) 932-3884
 NUCLEAR AND PARTICLE PHYSICS

* Dr. Beverly S. Cohen
 Inst. of Environmental Medicine
 NY Univ. Med. Ctr.
 Longmeadow Rd., Tuxedo NY 10987.
 (914) 351-5277
 BIOLOGICAL AND MEDICAL PHYSICS
 ENVIRONMENTAL & ENERGY PHYSICS

Dr. Esther Conwell
 Xerox Webster Research Center
 800 Phillips Rd.; Webster, NY 14644.
 (716) 422-4633
 CONDENSED MATTER PHYSICS

Dr. Stephanie B. DiCenzo
 AT&T Bell Laboratories, 1D-429
 600 Mountain Ave.; Murray Hill, NJ 07974
 (201) 582-6578
 CONDENSED MATTER PHYSICS

Dr. Mildred Dresselhaus
 Massachusetts Inst. of Tech., 13-3005
 Cambridge, MA 02139
 (617) 253-6864
 INTERFACE AND DEVICE PHYSICS
 CONDENSED MATTER PHYSICS

Dr. Georgia Fisancik
 AT&T Bell Laboratories, 1A-365A
 600 Mountain Ave.; Murray Hill, NJ 07974
 (201) 582-2204
 CONDENSED MATTER PHYSICS

Dr. Laura H. Greene
 Bellcore, 3X-281
 331 Newman Springs Rd.
 Red Bank, NJ 07701
 (201) 758-2940
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS

* Dr. Martha P. Haynes
 Cornell Univ., Space Sciences
 Space Sciences Building; Ithaca, NY 14853
 (607) 255-0610
 ASTROPHYSICS

Prof. Judith Herrfeld
 Brandeis Univ., Chemistry Dept
 Waltham, MA 02254
 (617) 736-2538
 CONDENSED MATTER PHYSICS

Dr. Shirley A. Jackson
 AT&T Bell Labs, 1D-337
 600 Mountain Ave.; Murray Hill, NJ 07974
 (201) 582-6664
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS

Dr. Barbara A. Jones
 Lyman Laboratory of Physics
 Harvard University; Cambridge, MA 02138
 (617) 495-3641
 CONDENSED MATTER PHYSICS

Dr. Christine Jones
 Harvard-Smithsonian Center for Astrophysics
 60 Garden Street; Cambridge, MA 02138.
 (617) 495-7137
 ASTROPHYSICS

Dr. Kathleen Kash
 Bellcore, 3G-113; 331 Newman Springs Rd.
 Red Bank, NJ 07701
 (201) 758-2845
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS

* Dr. Sonja Krause
 Rensselaer Polytechnic Inst., Chemistry Dept.
 Troy, NY 12180-3590.
 (518) 266-8445
 MOLECULAR AND POLYMER PHYSICS

Prof. Jacqueline Krim
 Northeastern Univ., Physics Dept
 Boston, MA 02115
 (617) 437-2929
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS

Dr. Carman Lim
 Harvard Univ., Chemistry Dept
 12 Oxford St.; Cambridge, MA 02138
 (617) 495-1775 or 254-0175
 BIOLOGICAL AND MEDICAL PHYSICS
 CHEMICAL AND STATISTICAL PHYSICS
 INTERFACE AND DEVICE PHYSICS

Prof. June L. Mathews
 MIT, Physics Dept. 26-435
 Cambridge, MA 02139
 (617) 253-4238
 NUCLEAR AND PARTICLE PHYSICS

Dr. Susan R. McKay
 Univ. of Maine, Physics Dept
 Orono, ME 04469
 (207) 581-1019
 CHEMICAL AND STATISTICAL PHYSICS
 CONDENSED MATTER PHYSICS

Dr. Patricia M. Mooney
 IBM Watson Research Center; P.O.Box 218
 Yorktown Heights, NY 10598
 (914) 945-3445
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS

Dr. Cherry A. Murray
 AT&T Bell Labs, 1D-334
 600 Mountain Ave.; Murray Hill, NJ 07974
 (201) 582-5849
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS

Prof. Gertrude F. Neumark
 Columbia Univ., Dept. of Materials Science
 Seeley W. Mudd Bldg; New York, NY 10027
 (212) 280-8267
 CONDENSED MATTER PHYSICS

Dr. Marilyn E. Noz
 NYU, Dept of Radiology
 550 First Ave.; New York, NY 10016
 (212) 340-6371
 NUCLEAR AND PARTICLE PHYSICS

Dr. Mary Jo Ondrechen
 Northeastern Univ., Chemistry Dept
 Boston, MA 02115
 (617) 437-2856
 CONDENSED MATTER PHYSICS

Dr. Elga Pakulis
 IBM Watson Research Center
 PO Box 218; Yorktown Heights, NY 10598.
 (914) 945-2839
 CONDENSED MATTER PHYSICS
 INTERFACE AND DEVICE PHYSICS
Dr. Sandra C. Greer
Univ. of Maryland, Chemistry Dept
College Park, MD 20742
(301) 454-6093
CHEMICAL AND STATISTICAL PHYSICS
MOLECULAR AND POLYMER PHYSICS

Dr. Marsha L. Lester
Univ. of Pennsylvania, Chemistry Dept.
Philadelphia, PA 19104
(215) 898-4640
CHEMICAL AND STATISTICAL PHYSICS

Dr. Rosemary A. MacDonald
National Bureau of Standards
Physics A 105; Gaithersburg, MD 20899.
(301) 975-2481
CONDENSED MATTER PHYSICS
ENVIRONMENTAL & ENERGY PHYSICS

Dr. Laurie E. McNeil
Univ. of North Carolina, Phillips Hall 039A
Dept. of Physics & Astronomy
Chapel Hill, NC 27514
(919) 962-7204
CONDENSED MATTER PHYSICS

Prof. Eugenie V. Mieleczarek
George Mason Univ., Physics Dept.
4400 University Dr.; Fairfax, VA 22030
(703) 332-2303
BIOLOGICAL AND MEDICAL PHYSICS

Dr. Julia A. Thompson
Univ. of Pittsburgh, Physics Dept
Pittsburgh, PA 15260
(412) 624-9060
NUCLEAR AND PARTICLE PHYSICS

SOUTHEAST [SE]

Dr. Juliette W. Ioup
Univ. of New Orleans, Physics Dept.
New Orleans, LA 70148
(504) 286-6715
GEOPHYSICS
CONDENSED MATTER PHYSICS
CHEMICAL AND STATISTICAL PHYSICS

MIDWEST [MW]

Dr. Susan D. Allen
Ctr for Laser Science and Engineering
University of Iowa; Iowa City, Iowa 52242
(319) 335-1309 or -1299
INTERFACE AND DEVICE PHYSICS

Dr. Sheila Bailey
NASA Lewis, MS 302-1; Cleveland, OH 44135
(216) 433-2228
ASTROPHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Mary L. Brake
Univ. of Michigan, Dept of Nuclear Eng.
Cooley Bldg, North Campus
Ann Arbor, MI 48109
(313) 764-1976
FLUID AND PLASMA PHYSICS

Dr. Meera Chandrasekhar
Univ. of Missouri, Physics Dept
Columbia, MO 65211
(314) 882-2619
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Bunn C. Clark
Ohio State U., Physics Dept.
174 W. 18th Ave.; Columbus, Ohio 43210
(614) 292-1843
NUCLEAR AND PARTICLE PHYSICS

Dr. Denice Denton
Univ. of Wisconsin, Dept of Elec. & Comp. Eng.
1415 Johnson Dr.; Madison, WI 53706
(608) 263-2354
CONDENSED MATTER PHYSICS

Dr. Joanne K. Fink
Argonne Natl Lab, Reactor Anal. and Safety
9700 Cass Ave., Bldg 206; Argonne, IL 60439
(312) 972-6512 or -1403
ENVIRONMENTAL & ENERGY PHYSICS

Dr. Suzanne Gronemeyer
Siemens Medical Systems
1906 Craigshire; St. Louis, MO 63146,
(314) 725-7075
BIOLOGICAL AND MEDICAL PHYSICS

Dr. Caroline L. Herzenberg
Argonne National Lab.
EES Division, Bldg. 362; Argonne, IL 60439.
(312) 972-3026

Dr. Lorella J. Jones
Univ. of Illinois, Physics Dept
1110 Green Street; Urbana, IL 61801
(217) 333-4270
NUCLEAR AND PARTICLE PHYSICS

Dr. Arlene J. Lennox
Fermilab, MS-301
PO Box 500; Batavia, IL 60510
(312) 840-4850
BIOLOGICAL AND MEDICAL PHYSICS

Dr. B. K. Lunde
2209 S.W. Park Ave.; Des Moines, IA 50321
(515) 286-7237
ENVIRONMENTAL & ENERGY PHYSICS

Dr. Nancy D. Morrison
Univ. of Toledo, Ritter Observatory
Toledo, OH 43606
(419) 537-2659
ASTROPHYSICS

Dr. Kathleen Newman
Univ. of Notre Dame, Physics Dept
Notre Dame, IN 46556
(219) 239-7182
CHEMICAL AND STATISTICAL PHYSICS
CONDENSED MATTER PHYSICS

Dr. Talat S. Rahman
Kansas State Univ., Physics Dept
Cardwell Hall; Manhattan, KS 66506
(913) 532-6786
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Carol Jo Crannell
NASA Goddard Space Flight Center
Code 682; Greenbelt, MD 20771.
(301) 344-5007
ASTROPHYSICS

Dr. Judy R. Franz
Dept. of Physics; West Virginia Univ.
Morgantown, WV 26506.
(304) 293-3422
CONDENSED MATTER PHYSICS

C3
NORTHWEST [NW]

Prof. Geraldine L. Richardson
Univ of Oregon, Chemical Physics Inst.
Eugene, OR 97403
(503) 686-4635
CHEMICAL AND STATISTICAL PHYSICS
ENVELOPMENTAL & ENERGY PHYSICS
MOLECULAR AND POLYMER PHYSICS

SOUTHWEST [SW]

Dr. Nancy J. Brown
Lawrence Berkeley Lab, Bldg 29C
Berkeley, CA 94720
(415) 486-4241
CHEMICAL AND STATISTICAL PHYSICS
ENVELOPMENTAL & ENERGY PHYSICS

Dr. Bonnie J. Buratti
CalTech, Jet Propulsion Lab
4800 Oak Grove Dr., Rm. 183-501
Pasadena, CA 91109
(818) 354-7427
ASTROPHYSICS

Dr. Bel Campbell
Dept. of Physics & Astronomy
Univ. of New Mexico; Albuquerque, NM 87131
(505) 277-5148 or -2616
ASTROPHYSICS

Dr. Shirley Chiang
IBM Almaden Research Center
850 Harry Rd.; San Jose, CA 95120-6099
(408) 927-2419
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Lynn R. Cominsky
Dept. of Physics and Astronomy
Sonoma State Univ.; Rohnert Park, CA 94928
(707) 664-2655
ASTROPHYSICS

Dr. Flonne Dowell
Los Alamos Nail Lab, Theoretical Div.
Univ. of California, MS-B221
Los Alamos, NM 87545
(505) 667-8765 or -5819
MOLECULAR AND POLYMER PHYSICS
CONDENSED MATTER PHYSICS

Dr. Prabha Durgapal
Welex, Research Dept
PO Box 42800; Houston, TX 77242
(713) 496-8305
GEOPHYSICS

Dr. Katherine Freese
Inst. for Theoretical Physics
U. C. Santa Barbara; Santa Barbara, CA 93106
(805) 961-4111
ASTROPHYSICS

Dr. Luisa F. Hansen
Lawrence Livermore National Lab
PO Box 808. L-405; Livermore, CA 94550
(415) 422-4512
ENVIRONMENTAL & ENERGY PHYSICS
NUCLEAR AND PARTICLE PHYSICS

Dr. Gail G. Hanson
Stanford Linear Accelerator, Bin 78
PO Box 4349; Stanford, CA 94305
(415) 854-3300 ext 2510
NUCLEAR AND PARTICLE PHYSICS

Dr. Deborah Jackson
Hughes Research Labs, MS RL66
3011 Malibu Canyon Rd.; Malibu, CA 90265
(213) 317-5823
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Deborah A. Konkowski
1139 Mountain Gate Rd.; Upland, CA 91786
(213) 259-2821
NUCLEAR AND PARTICLE PHYSICS

Dr. Kari Meyers
Occidental College, Physics Dept
Los Angeles, CA 90041
(213) 259-2821
ASTROPHYSICS

Dr. Marjorie Olnstead
UC-Berkeley, Physics Dept
Berkeley, CA 94720
(415) 643-8045
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Carmen Ortiz
IBM, K32; 650 Harry Rd.
San Jose, CA 95120
(408) 927-2481
CONDENSED MATTER PHYSICS
INTERFACE AND DEVICE PHYSICS

Dr. Elizabeth A. Rauscher
Tecnip Research Labs.
64 Santa Margarita; San Leandro, CA 94579
(415) 352-7104
NUCLEAR AND PARTICLE PHYSICS

Dr. Helen L. Reed
Arizona St. Univ, Mech/Aerospace Eng
Tempe, AZ 85287
(602) 965-2823
FLUIDS AND PLASMA PHYSICS

Dr. Arneula Sargent
CalTech, Downs Lab of Physics, 320-47
Pasadena, CA 91125
ASTROPHYSICS

Dr. Roberta P. Saxon
SRI International, PN 093
333 Ravenswood Ave.; Menlo Park, CA 94022
(415) 859-2663
CHEMICAL AND STATISTICAL PHYSICS

Prof. Jodye Selco
Univ. of Redlands, Physics Dept
PO Box 3080; Redlands, CA 92373-0999
(714) 793-2121
CHEMICAL AND STATISTICAL PHYSICS

Prof. Mary Beth Stearns
Arizona State Univ., Physics Dept
Tempe, AZ 85287
(602) 965-1606
INTERFACE AND DEVICE PHYSICS
CONDENSED MATTER PHYSICS

Dr. Judith A. Todd
USC, Dept Mat. Sci./Mech. Eng
VHE 718-0241; Los Angeles, CA 90089-0241
(213) 743-4966
CONDENSED MATTER PHYSICS

Dr. Virginia Trimble
UC-Irvine, Physics Dept.; Irvine, CA 92717
(714) 856-6948
ASTROPHYSICS

FOREIGN [FO]

Dr. Renee D. Diehl
Univ. of Liverpool, Physics Dept
Liverpool L69 3BX; UK
051-709-6022, ext. 2260
CONDENSED MATTER PHYSICS
II. COLLOQUIUM TITLES BY FIELD

This section lists the speakers and titles, grouped by physics subfield and alphabetically by speaker within each group. Refer to the first section for address and phone information on the speakers. The two-character abbreviation after each name refers to a geographic region in the first section.

ASTROPHYSICS

Dr. Sheila Bailey, NASA [MW]
1. Advances in photovoltaics
2. Space photovoltaics

Dr. Ronnie J. Buratti, Caltech/JPL [SW]
1. The icy satellites of Jupiter and Saturn
2. The Mars orbiter mission: Return to the red planet

Dr. Bel Campbell, Univ. of NM [SW]
1. Dusts and jets in star formation

Dr. Lynn R. Cominsky, Sonoma State Univ. [SW]
1. Discovery of eclipses from an x-ray burst source
2. X-ray and x-ray reprocessing
3. The extreme ultra-violet explorer satellite

Dr. Carol Jo Cramuell, NASA [EC]
1. Imaging high-energy emissions from solar flares
2. Using balloon-borne platforms for observations of solar flares
3. The physics of high-energy solar processes in solar flares

Dr. Katherine Freese, UCSB [SW]
1. Fundamental physics and dark matter
2. Baryogenesis: An explanation of the matter-antimatter content of the universe
3. Magnetic Monopoles and cosmology

Dr. Martha P. Haynes, Cornell Univ. [NE]
1. Extragalactic sociology: Environmental effects on galaxy evolution
2. Large-scale structure in the universe

Dr. Christine Jones, Harvard [NE]
1. Hot Gas in early type galaxies
2. Einstein x-ray images of the structure of clusters of galaxies

Dr. Karie Meyers, Occidental College [SW]
1. Variability in Seyfert Galaxies

Dr. Nancy D. Morrison, U. of Toledo [MW]
1. The fundamental properties of massive stars

Dr. Anneла Sargent, Caltech [SW]
1. Star formation
2. Millimeter wave interferometry of star-forming regions

Dr. Virginia Trimble, USC [SW]
1. Existence and nature of dark matter in the universe
2. Supernova: Bigger and better bangs
3. A field guide to the binary stars

BIOLICAL AND MEDICAL PHYSICS

Dr. Beverly S. Cohen, NYU Med. Ctr [NE]
1. Deposition of ultrafine particles on the human tracheobronchial tree: A determinant of the dose from radon daughters
2. Sampling airborne particles for estimation of inhalation exposure

Dr. Suzanne Groenenayer, Siemens Med. Sys. [MW]
1. Clinical magnetic resonance imaging

Dr. Arlene J. Lassen, [NE]
1. Neurons against cancer: The clinical experience at Fermilab

Dr. Carmay Lim, Harvard [NE]
1. Enzyme catalysis: Mechanism of ribonuclease A

Prof. Eugenie V. Mielczarek, George Mason U. [EC]
1. Iron transport and storage compounds in living systems: Massbauer spectroscopy

Prof. Geraldine L. Richmond, Univ. of OR [NW]
1. The spectroscopy of metal ions bound to proteins and polymers

Dr. Petra Schmalbrock, Ohio State [MW]
1. Magnetic resonance imaging and spectroscopy
2. Investigations of flow with magnetic resonance
3. Pulse sequence development for magnetic resonance imaging

Dr. Sara A. Solla, AT&T [NE]
1. Statistical mechanics of neural networks

Dr. Audrey W. Wegst, [MW]
1. Medical physics in diagnostic radiology
2. Quality control in nuclear medicine and diagnostic radiology
3. Placental transfer of radionuclides and fetal radiation dose

Dr. Marshall L. Lester, Univ. of PA [EC]
1. Photodissociation and photoionization of van der Waals complexes

Dr. Carmay Lim, Harvard [NE]
1. Nonsymmetry effects in chemical kinetics
2. Dynamics of gas-surface interactions

Dr. Susan R. McKay, Univ. of ME [NE]
1. The random field problem: Phase diagrams and thermodynamics
2. Spin glasses and chaos
3. Renormalization group methods and exactly-solvable models of phase transitions

Dr. Kathy Newman, Notre Dame [MW]
1. Ordering transitions in semiconductors

Dr. Robert P. Saxson, Univ. of Redlands [SW]
1. Spectroscopy and kinetics of transient species

Prof. Jodye Selco, Univ. of Redlands [SW]
1. Structural mechanisms to optimization problems
2. Statistical mechanics of neural networks

CONDESED MATTER PHYSICS

Prof. Jill C. Bonner, Univ. of RI [NE]
1. Spin-Peierls transitions
2. Quantum effects in spin dynamics

Prof. Meera Chandrasekhar, Univ. of MO [MW]
1. Quantum wells under hydrostatic pressure

Dr. Shirley Chang, IBM [SW]
1. Scanning tunnelling microscopy of metals on semiconductors
2. Atomic force microscopy

Prof. Deborah D. L. Chang, SUNY [NE]
1. Intercalation and exfoliation of graphite
2. Carbon composites
3. Structure of metal contacts to GaAs

Dr. Esther Conwell, Xerox [NE]
1. Solitons and polarons in polyacetylene
2. Differences between one- and three-dimensional semiconductors
3. Metal-insulator transition in doped trans-polyacetylene

Dr. Denise Denton, Univ. of Wisconsin [MW]
1. Effects of moisture on the electrical properties of polymide films

Dr. Stephanie D. Doolan, AT&T [NE]
1. Photodepletion spectroscopy of supported metal clusters: The molecular-metallic transition

Dr. Renee D. Diehl, Univ. of Liverpool [FO]
1. LED studies of alkali metals adsorbed on transition metals

Dr. Fionnie Dowell, Los Alamos [SW]
1. Molecular modeling of complex materials
2. New phase and molecule predictions for partially-ordered chains

Dr. Mildred Dresselhaus, MIT [NE]
1. Interconnection and superlattices
2. Liquid carbon

Dr. Georgia Fanick, AT&T [NE]
1. Periodic structures in laser-materials interactions

Dr. Judy R. Franz, West Virginia Univ. [EC]
1. Do Coulomb gaps exist?
2. Metal-nonmetal transitions in expanded liquid mercury

Dr. Laura H. Greene, Bellcore [NE]
1. High Tc oxide superconductors
2. Heavy fermion (CeCo6)Nb multilayers: Proximity effects
3. Metallic superlattices

Prof. Judith Herzfeld, Brandeis Univ. [NE]
1. Liquid crystalline phases in reversible assembling systems: Nonideality and growth

Dr. Julienne C. Joupp, Univ. of New Orleans [SE]
1. Orthogonality of measured normal modes in underwater acoustics

Dr. Debashri Jackson, Hughes Research [SW]
1. Teaching old atoms new tricks
2. Interference effects between different optical harmonics

Dr. Shirley A. Jackson, AT&T [NE]
1. Magnetic polarons in diluted magnetic semiconductor superlattices
2. Zone-folding and quasi-direct optical transitions in semiconductor superlattices
3. Electronic magnetic polaron effects in stressed diluted magnetic semiconductors

Dr. Barbara A. Jones, Harvard [NE]
1. The two-impurity Kondo model: Numerical renormalization group study

Dr. Kathleen Kash, Bellcore [NE]
1. Optical properties of microstructures

Prof. Jacqueline Kim, Northeastern Univ. [NE]
1. Wetting and nonwetting of solid rare gas films on metal and graphite surfaces

Dr. Rosemary A. MacDonald, NBS [EC]
1. Thermophysical properties of cubic metals
2. Heat capacity of coal
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The random field problem: Phase diagrams and thermodynamics</td>
<td>Dr. Susan R. McKay, Univ. of ME</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Spin glasses and chaos</td>
<td>Dr. Jane E. Zucker, AT&T</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Renormalization group methods and exactly-solvable models of phases</td>
<td>Dr. Nancy J. Brown, Lawrence Berkeley Lab.</td>
<td>[SW]</td>
<td></td>
</tr>
<tr>
<td>Phase diagrams and models of chalcogens adsorbed on nickel surfaces</td>
<td>Dr. O. Price, UNM</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Delight in disorder: Structural studies of chalcogenide glasses</td>
<td>Patrice M. Monney, Columbia Univ.</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Deep level defects in III-V semiconductors</td>
<td>Dr. Beverly S. Cohen, NYU Med. Ctr.</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>DX centers in III-V semiconductor alloys</td>
<td>Dr. Janis C. Ostrander, Univ. of MA</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Influence of DX centers on heterojunction device characteristics</td>
<td>Dr. Joanne K. Fink, Argonne</td>
<td>[MW]</td>
<td></td>
</tr>
<tr>
<td>Surface enhanced Raman scattering</td>
<td>Dr. B. K. Lunde, L.umo</td>
<td>[MW]</td>
<td></td>
</tr>
<tr>
<td>Colloidal crystals</td>
<td>Dr. Rosemary A. MacDonald, NBS</td>
<td>[EC]</td>
<td></td>
</tr>
<tr>
<td>Two-stage melting in two-dimensional colloidal crystals</td>
<td>Dr. Mary L. Brake, Univ. of MI</td>
<td>[MW]</td>
<td></td>
</tr>
<tr>
<td>Predicting the spectroscopic properties of discrete mixed-valence</td>
<td>Dr. Martha H. Redi, Princeton</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Physics of magnetic thin films</td>
<td>Dr. Tian S. Rahman, Kansas St. Univ.</td>
<td>[MW]</td>
<td></td>
</tr>
<tr>
<td>Transmission of the interface between a polar insulator and a non-polar semiconductor</td>
<td>Dr. Helen L. Reed, Arizona St. Univ.</td>
<td>[SW]</td>
<td></td>
</tr>
<tr>
<td>Initial stages of semiconductor interface formation</td>
<td>Dr. Prabha Durgapal, Welex</td>
<td>[SW]</td>
<td></td>
</tr>
<tr>
<td>Dynamics of ordered overlayers on metals</td>
<td>Dr. Juliette W. Jou, Univ. of New Orleans</td>
<td>[SE]</td>
<td></td>
</tr>
<tr>
<td>Surface reconstruction and surface phonon dispersion - a lattice dynamical study</td>
<td>Dr. Judy A. Todd, USC</td>
<td>[SW]</td>
<td></td>
</tr>
<tr>
<td>Surface lattice dynamics and electron energy loss spectroscopy</td>
<td>Dr. Lynn F. Schneemeyer, AT&T</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Origin of magnetism in 3D metals</td>
<td>Dr. Mary Beth Stearns, Ariz. St. Univ.</td>
<td>[SW]</td>
<td></td>
</tr>
<tr>
<td>Structural and magnetic behavior of multilayered films</td>
<td>Dr. Gwo-Ching Wang, RPI</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Mechanical property relationships in advanced structural materials</td>
<td>Dr. Alice E. White, AT&T</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Two-dimensional phase transitions studied by low-energy electron diffraction</td>
<td>Dr. Barbara A. Wilson, AT&T</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Mesotaxy: Single-crystal growth of buried silicon layers by ion implantation</td>
<td>Dr. Debashis D. Dange, SUNY</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Laser deposition and etching</td>
<td>Dr. Debra Jackson, Hughes Research</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Laser induced desorption analysis of surface defects and contamination</td>
<td>Dr. Krishna Kishore, Bhaloke</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Advancements in photocatalysis</td>
<td>Dr. D. D. Miller, NASA</td>
<td>[MW]</td>
<td></td>
</tr>
<tr>
<td>Quantum wells under hydrostatic pressure</td>
<td>Dr. Shirley Chiang, IBM</td>
<td>[SW]</td>
<td></td>
</tr>
<tr>
<td>Scanning tunneling microscopy of metals on semiconductors</td>
<td>Dr. Gwo-Ching Wang, RPI</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Atomic force microscopy</td>
<td>Dr. Alice E. White, AT&T</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Two-dimensional phase transitions studied by low-energy electron diffraction</td>
<td>Dr. Margaret H. Weiser, Raytheon</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Two-dimensional phase transitions studied by high resolution low energy electron diffraction</td>
<td>Dr. Meera Chandrasekhar, Univ. of MO</td>
<td>[MW]</td>
<td></td>
</tr>
<tr>
<td>Growth of large lattice mismatch metal-semiconductor heteroepitaxy thin films by MBE</td>
<td>Dr. Meera Chandrasekhar, Univ. of MO</td>
<td>[MW]</td>
<td></td>
</tr>
<tr>
<td>Scanning tunneling microscopy of metals on semiconductors</td>
<td>Dr. Gwo-Ching Wang, RPI</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Atomic force microscopy</td>
<td>Dr. Alice E. White, AT&T</td>
<td>[NE]</td>
<td></td>
</tr>
<tr>
<td>Two-dimensional phase transitions studied by high resolution low energy electron diffraction</td>
<td>Dr. Meera Chandrasekhar, Univ. of MO</td>
<td>[MW]</td>
<td></td>
</tr>
</tbody>
</table>

FLUID AND PLASMA PHYSICS

- Dr. Mary L. Brake, Univ. of MI
- Dr. Martha H. Redi, Princeton
- Dr. Helen L. Reed, Arizona St. Univ.
- Dr. Prabha Durgapal, Welex
- Dr. Juliette W. Jou, Univ. of New Orleans
- Dr. Judy A. Todd, USC
- Dr. Gwo-Ching Wang, RPI
- Dr. Alice E. White, AT&T
- Dr. Barbara A. Wilson, AT&T
- Dr. Jane E. Zucker, AT&T
- Dr. Nancy J. Brown, Lawrence Berkeley Lab.
- Dr. Beverly S. Cohen, NYU Med. Ctr.
- Dr. Janis C. Ostrander, Univ. of MA
- Dr. Joanne K. Fink, Argonne
- Dr. B. K. Lunde, L.umo
- Dr. Rosemary A. MacDonald, NBS
- Dr. Mary L. Brake, Univ. of MI
- Dr. Martha H. Redi, Princeton
- Dr. Helen L. Reed, Arizona St. Univ.
- Dr. Prabha Durgapal, Welex
- Dr. Juliette W. Jou, Univ. of New Orleans
- Dr. Judy A. Todd, USC
- Dr. Gwo-Ching Wang, RPI
- Dr. Alice E. White, AT&T
- Dr. Barbara A. Wilson, AT&T
- Dr. Jane E. Zucker, AT&T
- Dr. Nancy J. Brown, Lawrence Berkeley Lab.
- Dr. Beverly S. Cohen, NYU Med. Ctr.
- Dr. Janis C. Ostrander, Univ. of MA
- Dr. Joanne K. Fink, Argonne
- Dr. B. K. Lunde, L.umo
- Dr. Rosemary A. MacDonald, NBS
- Dr. Mary L. Brake, Univ. of MI
- Dr. Martha H. Redi, Princeton
- Dr. Helen L. Reed, Arizona St. Univ.
- Dr. Prabha Durgapal, Welex
- Dr. Juliette W. Jou, Univ. of New Orleans
- Dr. Judy A. Todd, USC
- Dr. Gwo-Ching Wang, RPI
- Dr. Alice E. White, AT&T
- Dr. Barbara A. Wilson, AT&T
MOLECULAR AND POLYMER PHYSICS

Dr. Flonne Dowell, Los Alamos (SW)
1. Molecular modeling of complex materials
2. Molecular theories for polymers
3. New phase and molecular predictions for partially-ordered chains

Dr. Sandra C. Greer, Univ. of MD (EC)
1. Equilibrium polymerisation as a phase transition

Dr. Sonja Krause, RPI (NE)
1. Elastic small-angle neutron scattering of multi-block copolymers and crosslink labeled gels
2. Equilibrium thermodynamics of homogeneus and microphased separated block copolymers

Prof. Geraldine L. Richmond, Univ. of OR (NW)
1. The spectroscopy of metal ions bound to proteins and polymers

NUCLEAR AND PARTICLE PHYSICS

Prof. Karen Barad, Bardam College (NE)
1. Numerical simulations of quantum chromoodynamics

Dr. Eva Bozoki, Brookhaven (NE)
1. Synchrotron radiation and its use

Prof. Janice Button-Shafer, Univ. of MA (NE)
1. Utilisation of polarized targets and polarized beams in nuclear and particle physics

Dr. Ling-Lieh Chau, Brookhaven (NE)
1. Frontiers of particle physics

Prof. Julie A. Ciszewski, Rutgers Univ. (NE)
1. Onset of deformation in heavy nuclei

Dr. Bunny C. Clark, Ohio State Univ. (MW)
1. Relativistic effects in nuclear structure

Dr. Luis F. Hansen, Lawrence Livermore (SW)
1. Microscropic optical model potentials in the analysis of nucleon-nucleon scattering
2. The transport of 14 MeV neutrons through materials of interest to fusion reactors

Dr. Gail G. Hanson, SLAC (SW)
1. Physics of the neutral weak vector boson Z0

Dr. Loretta M. Jones, Univ. of IL (MW)
1. Quark and gluon jets - traces of color in a colorless world

Dr. Deborah A. Konsowski (SW)
1. The nature of singularities in general relativity
2. Equivariant Lagrangians in physics

Prof. June L. Matthews, MIT (NE)
1. Probing the nucleus with high-energy photons
2. How many nucleons does it take to scatter a pion?

Dr. Marilyn E. Nez, NYU (NE)
1. Group theoretical examples in relativistic quantum mechanics
2. Local area networks in an imaging environment

Dr. Sathyavathi Ramavataram, Brookhaven (NE)
1. Nuclear shell models
2. Continuum theories of nuclear reactions
3. Polarisation phenomena in nuclear reactions
4. Model calculations at intermediate and high energies

Dr. Elizabeth A. Rauscher, Tecnic Research (SW)
1. S-matrix of decay in light and heavy elements
2. Cosmology models, strings, and particle physics

Dr. Junko Shigemitsu, Ohio State (MW)
1. Uses of lattices in elementary particle physics

Dr. Julia A. Thompson, U. of Pittsburgh (EC)
1. Direct photon production at the CERN ISR
2. Anomalous electron production at low transverse momentum
3. Relativistic heavy ions and closed-packed quarks
4. Direct Y's: Shedding light on quarks and gluons a review of present knowledge

Dr. Reeta Vyas, Univ. of Arkansas (SE)
1. Two-body effects in photodisintegration of deuteron and triton
2. A trip to nuclear world. (For undergraduate students)
3. Delay time distribution of quantum fields

Dr. Sallie A. Watkins, (MW)
1. The beta ray work of Lise Meiner

TALKS FOR GENERAL AUDIENCES

Dr. Sheila Bailey, NASA (MW)
1. Solar power in space

Prof. Karen Barad, Bardam College (NE)
1. Quarks and supercomputers

Dr. Eva Bozoki, Brookhaven (NE)
1. Synchrotron radiation and its use

Dr. Mary L. Brake, Univ. of MI (MW)
1. Plasmas that glow in the dark

Dr. Bonnie J. Buratti, Caltech/JPL (SW)
1. The exploration of Mars
2. Voyager encounters Jupiter and Saturn
3. Rendezvous with a comet

Prof. Janice Button-Shafer, Univ. of MA (NE)
1. The Strategic Defense Initiative - physicists' views

Dr. Bel Campbell, Univ. of NM (SW)
1. Star formation. The sound and the fury
2. Does astronomy matter?

Dr. Shirley Chang, IBM (SW)
1. The scanning tunnelling microscope: A microscope that sees atoms

Dr. Deborah D. L. Chung, SUNY (NE)
1. Aeronaucial materials
2. Carbon
3. Ceramics

Dr. Beverly S. Cohen, NYU Med. Ctr (NE)
1. The radon problem: An overview

Dr. Lynn R. Cominsky, Sonoma State Univ. (SW)
1. X-ray visions from the edges of the universe - black holes and quasars

Dr. Denice Denton, Univ. of Wisconsin (MW)
1. The fundamental aspects of microfabrication of integrated circuits

Dr. Renee D. Dickh, Univ. of Liverpool (FO)
1. Physics education in Britain

Dr. Suzanne Gromcrneyer, Siemens Med. Sys. (MW)
1. Clinical magnetic resonance imaging

Dr. Martha P. Haynes, Cornell Univ. (NE)
1. Extrasolar biology: Environmental effects on galaxy formation
2. Large-scale structure in the universe

Dr. Caroline L. Herrnberg, Argonne (MW)
1. Women scientists and engineers of antiquity and the Middle Ages

Dr. Sonja Krause, RPI (NE)
1. Introduction to polymers

Dr. Arlene J. Lonon (MW)
1. Neutrons against cancer: The clinical experience at Fermilab
2. A woman's career in physics

Dr. B. K. Lunde (MW)
1. Use of fiber optics by the telephone company
2. Development and marketing of a technical product

Dr. Elizabeth A. Rauscher, Tecnic Research (SW)
1. Nature and the art of photography
2. Ambient superconductors: Are they for real?

Dr. Petra Schmatbrock, Ohio State (MW)
1. The basics of magnetic resonance imaging and spectroscopy

Dr. Lynn P. Schneemeier, AT&T (NE)
1. High temperature superconductors

Dr. Judith A. Todd, USC (SW)
1. The earliest metals smelting in Europe
2. Studies of the African Iron Age

Dr. Virginia Trimble, USC (SW)
1. Cosmology: Man's place in the universe
2. Your lucky stars: An introduction to stellar evolution

Dr. Reeta Vyas, Univ. of Arkansas (SE)
1. A trip to nuclear world. (For undergraduate students)

Dr. Sallie A. Watkins, (MW)
1. A woman's place in early twentieth century physics
2. Two discoveries, two responses
3. The making of a physicist: Lise Meiner

Dr. Audrey V. Wegg (SW)
1. Experiences in the developing countries using nuclear medicine: 2 years with the IAEA

Dr. Alice E. White, AT&T (NE)
1. Materials modification using ion beams

Dr. Barbara A. Wilson, AT&T (NE)
1. Materials modification using ion beams

The PHYSICS COLLOQUIUM SPEAKERS LIST is compiled annually by the American Physical Society Committee on the Status of Women in Physics. Comments or questions on the 1988/89 CSL should be addressed to Ken Lyons, AT&T Bell Laboratories, 1A125, 600 Mountain Ave., Murray Hill, NJ 07974.
COLLOQUIUM SPEAKERS LIST ENROLLMENT/MODIFICATION FORM

The PHYSICS COLLOQUIUM SPEAKERS LIST is compiled annually by the American Physical Society Committee on the Status of Women in Physics. Comments or questions, as well as modifications or new entries for the 1988/89 CSL should be addressed to

Ken Lyons, 1A126
AT&T Bell Laboratories
600 Mountain Ave.
Murray Hill, NJ 07974

To modify an existing entry, or to make a new one, please fill out a copy of the form below and return it to the address above. PLEASE PRINT CLEARLY OR TYPE!

Check whether this is a modification of an existing entry (____) or a new entry (____).

Name: ____________________________ Phone: ____________________________

Short name of institution (for use in second section of CSL): ____________________________

Address: (please use no more than three lines of about 38 char maximum per line)

__

__

__

zipcode ______________

CSWP Roster registration number, if known: ____________________________

To cancel a listed talk, give the title as it appears in the list and the section(s) where it is to be cancelled. If you wish to delete all old entries, just enter "ALL", and register the new titles in the next section. Use an additional sheet if necessary:

To register a new title, give the title as you want it to appear (first word and proper nouns capitalized) in the left column below. Then check the section(s) where it is to be inserted. Also check the top box if this is a CORRECTION of an existing title. If more than 4 talks are registered, please use an additional copy of this form, stapling them together.

<table>
<thead>
<tr>
<th>Title 1.</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Astrophysics</td>
<td>□ Bio/Medical</td>
</tr>
<tr>
<td>□ Cond. Matter</td>
<td>□ Env/Energy</td>
</tr>
<tr>
<td>□ Geophysics</td>
<td>□ Interface/Device</td>
</tr>
<tr>
<td>□ Nuclear/Particle</td>
<td>□ Talks for General Audiences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title 2.</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Astrophysics</td>
<td>□ Bio/Medical</td>
</tr>
<tr>
<td>□ Cond. Matter</td>
<td>□ Env/Energy</td>
</tr>
<tr>
<td>□ Geophysics</td>
<td>□ Interface/Device</td>
</tr>
<tr>
<td>□ Nuclear/Particle</td>
<td>□ Talks for General Audiences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title 3.</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Astrophysics</td>
<td>□ Bio/Medical</td>
</tr>
<tr>
<td>□ Cond. Matter</td>
<td>□ Env/Energy</td>
</tr>
<tr>
<td>□ Geophysics</td>
<td>□ Interface/Device</td>
</tr>
<tr>
<td>□ Nuclear/Particle</td>
<td>□ Talks for General Audiences</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title 4.</th>
<th>CORRECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ Astrophysics</td>
<td>□ Bio/Medical</td>
</tr>
<tr>
<td>□ Cond. Matter</td>
<td>□ Env/Energy</td>
</tr>
<tr>
<td>□ Geophysics</td>
<td>□ Interface/Device</td>
</tr>
<tr>
<td>□ Nuclear/Particle</td>
<td>□ Talks for General Audiences</td>
</tr>
</tbody>
</table>
to sacrifice my health, grades, or the quality of my family life. The loss of the scholarship is going to cause great financial stress. If your organization can point me in any direction for resources I would be very thankful."

Fortunately, in a subsequent letter, we learned that her financial aid office changed the title of her scholarship, and it is secure through next year. She writes:

"I thoroughly enjoyed the reading material you sent me along with the contact names and addresses. It is very gratifying to know there is such an active support group. There are many days when I think I am pursuing a lost cause. I am concerned at times about my age and how far I have to go. I wonder often if and when I finally do achieve the degree I long for, will there be a place for me in the physics community? Perhaps there is information your group can give me that will allow me hope. It is a huge undertaking but I feel compelled to go on. To stop is not an alternative.

"I wonder though, how many others are in the situation I was in and are unable to find a solution?""

Her question is sobering, and her situation is disturbing to anyone concerned with the status of women in physics. The Gazette welcomes comments and suggestions, from those who are or have been in similar situations.

APS COUNCIL ADOPTS STATEMENT ON DEMEANING GRAPHIC MATERIAL IN THE WORKPLACE

In response to an initiative from the CSWP, the APS Council adopted the following statement on the display of demeaning graphic material in the workplace. While the statement has no regulatory force, it offers support to individuals who wish to take a stand on the display of sexually offensive material in the work environment.

"The Council of the American Physical Society has long been concerned with the serious underrepresentation of women and minorities in the profession of physics and, over the years, has established a number of programs that attempt to counter this trend. The Council now urges each member of the Society to help in this effort by being sensitive to all matters that affect the atmosphere of the physics workplace.

"In particular, actions that create a hostile, intimidating, or offensive work environment for any group undermine the affirmation action efforts of the Society and should be eliminated. These actions include the public posting of materials that are insulting, derogatory, or exclusionary to a particular group.

"We call upon all members of the Society to help ensure that persons of every race, gender, and ethnic origin may feel a welcome part of the physics community."

1988 LAURA EISENSTEIN AWARD

The Laura Eisenstein Award was established in 1986 by the Department of Physics of the University of Illinois at Urbana-Champaign, in cooperation with the CSWP, to encourage women to undertake studies leading toward a degree in physics. The award recognizes a University of Illinois woman who has achieved academic excellence in undergraduate studies or who has distinguished herself in teaching or research while pursuing a graduate degree.

This year's recipient is Julie A. Borchers, a graduate student who has distinguished herself in her thesis research as well as in her course work. According to her advisor, Professor M. B. Salamon, she has eight papers to her credit and has done a superb job at the National Bureau of Standards where she has conducted neutron scattering experiments on superlattices.

CSWP joins the University of Illinois in congratulating Ms. Borchers, and recognizes her potential of becoming an outstanding physicist.

GRADUATE OPPORTUNITIES FOR WOMEN

Dear Colleague:

The University of California, Santa Barbara, is actively recruiting and offering financial support for women seeking graduate degrees in the fields of mathematics, the physical sciences, and engineering. The Graduate Division at UCSB is firmly committed to increasing the quality and quantity of female graduate students in these disciplines and has various fellowships and financial assistance available for qualified women.

If you are seeking information on strong graduate programs in these areas, we will be pleased to offer any assistance necessary. We can facilitate the application process and act as referrals for individual departments. Questions may be directed to Karen Nelson, Director of Graduate Admission, (805) 961-4342, or Dorothy Nagaran, Affirmative Action Coordinator, (805) 961-3803. Write to Graduate Division, Cheadle Hall, University of California, Santa Barbara, CA 93106.

Richard Duran
Associate Dean
UCSB, Graduate Division
CURRENT ADDRESSES SOUGHT

The Post Office has been unable to deliver the CSWP Gazette for the following people, and CSWP is anxious to get new addresses. Do you see your name or a friend's name here? Please fill out a change of address form.

<table>
<thead>
<tr>
<th>NAME</th>
<th>NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>SALLIE W. ABBAS</td>
<td>VIOLA PRICE BARTON</td>
</tr>
<tr>
<td>BEATA J. ABBS</td>
<td>BETTY A. BAUER</td>
</tr>
<tr>
<td>DOROTHY A. ADAMS</td>
<td>KAREN STRICKER BAUER</td>
</tr>
<tr>
<td>JEAN C. ADAMS</td>
<td>CHARLOTTE BAUERLE</td>
</tr>
<tr>
<td>MARY E. ADAMSON</td>
<td>THERESA BAUS</td>
</tr>
<tr>
<td>SANDRA J. ADCOCK</td>
<td>LYNNE A. BAYLOR</td>
</tr>
<tr>
<td>CONCEPCION S. ALBANO</td>
<td>DIANA I. BELL</td>
</tr>
<tr>
<td>ROSE ANNE ALBRIZIO</td>
<td>SUSAN M. BENFORD</td>
</tr>
<tr>
<td>SHAMSIA Z. ALI</td>
<td>CAROL D. BENNETT</td>
</tr>
<tr>
<td>ANANCA M.S. AMATYA</td>
<td>RACHELLE BERGMANN</td>
</tr>
<tr>
<td>ELIZABETH DU ING ANDERSON</td>
<td>SR. MARY BERNDARDA</td>
</tr>
<tr>
<td>MARY FRANCES ANTON</td>
<td>CORRE WILLIAMS BERRY</td>
</tr>
<tr>
<td>CHAUDHURI APARNA</td>
<td>ABIGAIL E. BEUTLER</td>
</tr>
<tr>
<td>JULIA T. APTER</td>
<td>MARY BEZIAK</td>
</tr>
<tr>
<td>ELIZABETH M. ARASE</td>
<td>LAURA A.H. BILLARD</td>
</tr>
<tr>
<td>ENGIN ARIK</td>
<td>SUSAN K. BILLINGSLEY</td>
</tr>
<tr>
<td>PHYLLIS JEAN ARNOLD</td>
<td>SANDRA J. BLACK</td>
</tr>
<tr>
<td>NUKHET ARRAN</td>
<td>KATHERINE BLACKLOCK</td>
</tr>
<tr>
<td>MARY ATTERMeyer</td>
<td>KATHERINE B. BLAUGHTER</td>
</tr>
<tr>
<td>LINDA EVES AULT</td>
<td>DAVE P. BOERCKER</td>
</tr>
<tr>
<td>PATRICIA M. AUTRY</td>
<td>HARRIET BOUGEN</td>
</tr>
<tr>
<td>H. AUYANG</td>
<td>CAROL BOWEN</td>
</tr>
<tr>
<td>N. KATHERINE BADGER</td>
<td>ANN MARIE BRADLEY</td>
</tr>
<tr>
<td>LYNN HUBBARD BAHAM</td>
<td>BARBARA J. BRAUER</td>
</tr>
<tr>
<td>ANNA MAE WALSH BARKER</td>
<td>MARY J. BREEDLOVE</td>
</tr>
<tr>
<td>JANE W. BALL</td>
<td>NANCY S. BRICKHOUSE</td>
</tr>
<tr>
<td>KATYA BALOG</td>
<td>MARCIA BRINK</td>
</tr>
<tr>
<td>PATRICIA BANOGON</td>
<td>ANN BROMBERG</td>
</tr>
<tr>
<td>ROSEMARY J. BARRETT</td>
<td>EVA T. BROWDER</td>
</tr>
<tr>
<td>SUSANA BARROS</td>
<td>PATRICIA S. BUCHANAN</td>
</tr>
<tr>
<td></td>
<td>EDITH G. BUERGER</td>
</tr>
<tr>
<td></td>
<td>JUSTINE BURLESON</td>
</tr>
<tr>
<td></td>
<td>SUSAN M. BURNETT</td>
</tr>
<tr>
<td></td>
<td>BARBARA A. BURNS</td>
</tr>
<tr>
<td></td>
<td>JEAN BURNS</td>
</tr>
<tr>
<td></td>
<td>VELMA J. BURNS</td>
</tr>
<tr>
<td></td>
<td>C. ANN BURTON</td>
</tr>
<tr>
<td></td>
<td>ELEANOR ANN F. BUSBY</td>
</tr>
<tr>
<td></td>
<td>ANN SANDERS BUXTON</td>
</tr>
<tr>
<td></td>
<td>AUDREY B. BUYRN</td>
</tr>
<tr>
<td></td>
<td>LOUISE F. BYRNS</td>
</tr>
<tr>
<td></td>
<td>ANNE C. BALANT-CAMPBELL</td>
</tr>
<tr>
<td></td>
<td>LORNA E. CAMPBELL</td>
</tr>
<tr>
<td></td>
<td>PATRICIA ANN CANTY</td>
</tr>
<tr>
<td></td>
<td>DEBORAH CARPENTER</td>
</tr>
<tr>
<td></td>
<td>BRIDGET O. CARRAGHER</td>
</tr>
<tr>
<td></td>
<td>VIRGINIA L. CARTER</td>
</tr>
<tr>
<td></td>
<td>JEAN CASS</td>
</tr>
<tr>
<td></td>
<td>PATRICIA L. CASTRO</td>
</tr>
<tr>
<td></td>
<td>MAVIS GAIL CAUFIELD</td>
</tr>
<tr>
<td></td>
<td>CATHY CAVENDISH</td>
</tr>
<tr>
<td></td>
<td>HILDA A. CEDEIRA</td>
</tr>
<tr>
<td></td>
<td>CATHERINE J. CESARSKY</td>
</tr>
<tr>
<td></td>
<td>RUTH W. CHABAY</td>
</tr>
<tr>
<td></td>
<td>JAYA CHANDRA</td>
</tr>
<tr>
<td></td>
<td>MEERA CHANDRALAL</td>
</tr>
<tr>
<td></td>
<td>HAN-CHUAN CHANG</td>
</tr>
<tr>
<td></td>
<td>JANE CHEN ERH CHANG</td>
</tr>
<tr>
<td></td>
<td>KATHERINE CHANG</td>
</tr>
<tr>
<td></td>
<td>YU JULIA CHAO</td>
</tr>
</tbody>
</table>