spacer
The Gordon and Betty Moore Foundation Fundamental Physics Innovation Awards


Recipients of the Gordon and Betty Moore Foundation Fundamental Physics Innovation Awards

Convening Award Recipients | Visitor Award Recipients | Lectureship Award Recipients

The Gordon and Betty Moore Foundation Fundamental Physics Innovation Awards hope to stimulate ideas on innovative ways in which emerging technologies can be used to address pressing problems in fundamental physics. The awards support a variety of ways to bring people together to discuss and collaborate on ideas to advance fundamental physics as described in the Scientific Scope.

Below, we recognize the recipients of the awards from each year with their corresponding abstracts.

Past Recipients

January 2019

Convening Awards

Noah Kurinsky

Noah A. Kurinsky
Over the last few years, a growing community of scientists has begun to explore the prospect of dark matter lighter than the proton (sub- GeV), which cannot currently be detected with conventional laboratory-based searches. This workshop, “New Directions in the Search for Light Dark Matter”, aims to bring together the various international communities, both experimental and theoretical, working on new technologies and models for light dark matter, in order to explore the feasibility and naturalness of these new ideas.

Visitor Awards

Paul Hess

Paul Hess
Paul Hess, Visiting Assistant Professor of Physics at Middlebury College, will visit the Jayich group at UC Santa Barbara to study molecular ions that are promising systems to discover new sources of symmetry violation responsible for the absence of anti-matter in the Universe. The collaboration will perform the spectroscopy necessary to plan precision measurements for controlling these molecules at the level of single quantum states.

Pavlos Protopapas

Pavlos Protopapas
Dr. Protopapas’ visit will bring the power and flexibility of machine-learning approaches to bear on the next frontier of gravitational-wave searches; namely, using precise radio observations of pulsars to make a Galactic net of clocks that can catch gravitational-wave emission from supermassive binary black-hole systems. With the ever increasing volume of data being collected, and some noise processes challenging to filter, deep-learning is an exciting tool to deploy on this new portion of the gravitational-wave landscape.

Mariangela Settimo

Mariangela Settimo
For the analysis of the data collected by the DAMIC experiment at SNOLAB to search for dark matter, and to discuss future directions and technologies for dark matter direct detection at the Center for Experimental Nuclear Physics and Astrophysics (CENPA) at the University of Washington.

Fred Wietfeldt

Fred Wietfeldt
We are planning an experiment at the University of Washington to limit or measure the Fierz interference effect in the beta energy spectrum of Helium-6, a heavy isotope of helium, to a precision of less than 0.1%. The presence of this effect, predicted to be zero in the Standard Model of particle physics, may provide hints of new physics.

Ira Rothstein

Ira Rothstein
Our collaboration involves utilizing S matrix techniques for the purposes of making precision predictions for gravity waves produced in binary inspirals.

Lectureship Awards

Kolkowitz

Shimon Kolkowitz
Professor Shimon Kolkowitz, an experimental atomic physicist from the University of Wisconsin - Madison, will visit Stevens Institute of Technology to give a lecture on the use of optical atomic clocks for fundamental physics research. The seminar will serve as the basis for scientific discussions on the prospects for using optical atomic clocks for the study of gravity and foundations of general relativity with host Professor Igor Pikovski, a theoretical physicist at Stevens Institute of Technology.

Philip Cole

Philip Cole
Philip Cole (Lamar University), Elton Smith (Jefferson Lab), and Michael Wood (Canisius College) will receive a Convening Award to organize the Light Dark Matter @ Accelerators LDMA2019 workshop. Andrea Celentano and Marco Battaglieri, both from INFN-Genova, are the lead workshop organizers of LDMA2019, which will convene in Venice, Italy, November 20-22, 2019.

Visitor Awards

Klaus Blaum

Timothy Chupp
Measurement of magnetic fields with absolute accuracy is being transformed with the development of optically pumped 3He magnetometers and self-calibrated measurement the magnetic moment of the helion - the 3He nucleus. This Visitor Award will enable my collaboration with the group of Professor Klaus Blum of Max Planck Institute, Heidelberg, bringing these two developments together and connecting to measurement of the magnetic moment anomaly of the muon, which is currently underway at Fermilab.

Jamac Deliduman

Yamaç (Pehlivan) Deliduman
Prof. Yamaç (Pehlivan) Deliduman from Mimar Sinan Fine Arts University in Istanbul and Prof. A. Baha Balantekin from University of Wisconsin - Madison will collaborate on the neutrino emission from a core collapse supernova. In particular, they will analyze the emergent many-body phenomena associated with neutrino flavor oscillations at high densities, and illuminate the possible role of sterile neutrinos in the scheme.

Jayant Murthy

Jayant Murthy
This proposal aims to invite Jayant Murthy, an expert in observational analyses of the ultraviolet background radiation, to Maryland to engage in intensive discussions with James Overduin (Towson University) and Richard Henry (Johns Hopkins University) on the possibility that recently detected anomalies in this radiation may be connected to the nature of dark matter. In particular, we aim to determine whether a conclusive answer to this question may be obtained using data from the ALICE spectrometer aboard the New Horizons spacecraft.

Qiaoli Yang

Qiaoli Yang
Qiaoli Yang, Associate Professor of Physics at Jinan University in Guangzhou, will visit Professor Pierre Sikivie at University of Florida to explore the quantum nature of axion dark matter. As axions are generally predicted by theories with extra dimensions such as string theory, a deep understanding of their quantum properties and consequent cosmological, astrophysical and laboratory properties may serve as a new window on ultra-high energy scale physics.

Lectureship Awards

Jon Urheim

Jon Urheim
Prof. Jon Urheim of IU Bloomington will be presenting a department-wide colloquium on the DUNE (Deep Underground Neutrino Experiment) and NOvA (NuMI Off-axis electron neutrino appearance) projects which he works on, as well as on neutrino physics in general. Fundamental physics will be advanced through an interdisciplinary discussion linking neutrino physics with dark matter (LZ, UAlbany Prof. Szydagis) and the LHC (ATLAS, UAlbany Prof. Jain).

Daniel Carney

Cindy Regal

Daniel Carney and Cindy Regal
Paradigmatic advances in the ability to create, control, and detect quantum states of massive mechanical objects has enabled unprecedented levels of sensitivity to small displacements and forces. Our meeting will bring together theoretical and experimental researchers from both the particle physics and quantum sensing communities, with the goal of developing new probes of physics beyond the standard model using mechanical devices in the quantum regime.

Visitor Awards

Edward John Daw

Edward John Daw
Professor Ed Daw of The University of Sheffield, United Kingdom, will visit The University of Washington, Seattle, and Lawrence Livermore National Laboratory, collaborating on the Axion Dark Matter Search (ADMX) experiment. Prof. Daw will assist with data analysis training and development as well as conducting R&D on novel resonant feedback techniques aimed at increasing the search rate for axions in the Galactic dark matter halo.

Sylvain Fichet

Sylvain Fichet
Our collaboration studies exotic spin-dependent forces originating from light sectors beyond the Standard Model. Our aim is to explore and guide the future experimental prospects for such forces, which offer a window into light hidden sectors and can serve as light Dark Matter searches.

Lectureship Awards

Matt Redshaw 400x500

Matt Redshaw
In this talk, I will discuss high precision atomic mass measurements performed using Penning traps to determine b-decay Q values for isotopes used in bb-decay and neutrino mass determination experiments. The Q value measurements will assist in the interpretation of results from these large scale experiments to answer questions about the neutrino mass scale and its Dirac or Majorana particle nature.