PN2222A / MMBT2222A / PZT2222A — NPN General Purpose Amplifier

Features

- This device is for use as a medium power amplifier and switch requiring collector currents up to 500mA.
- Sourced from process 19.

Absolute Maximum Ratings * $T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{CEO}</td>
<td>Collector-Emitter Voltage</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>V_{CBO}</td>
<td>Collector-Base Voltage</td>
<td>75</td>
<td>V</td>
</tr>
<tr>
<td>V_{EBO}</td>
<td>Emitter-Base Voltage</td>
<td>6.0</td>
<td>V</td>
</tr>
<tr>
<td>I_C</td>
<td>Collector Current</td>
<td>1.0</td>
<td>A</td>
</tr>
<tr>
<td>T_{STG}</td>
<td>Operating and Storage Junction Temperature Range</td>
<td>-55 ~ 150</td>
<td>°C</td>
</tr>
</tbody>
</table>

NOTES:

1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_a = 25^\circ C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_D</td>
<td>Total Device Dissipation</td>
<td>PN2222A</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>Derate above 25°C</td>
<td>*MMBT2222A</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td></td>
<td>**PZT2222A</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.0</td>
</tr>
<tr>
<td>R_{JUC}</td>
<td>Thermal Resistance, Junction to Case</td>
<td>83.3</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{JUA}</td>
<td>Thermal Resistance, Junction to Ambient</td>
<td>200</td>
<td>357</td>
</tr>
</tbody>
</table>

* Device mounted on FR-4 PCB 1.6” × 1.6” × 0.06”.
** Device mounted on FR-4 PCB 36mm × 18mm × 1.5mm; mounting pad for the collector lead min. 6cm².
Electrical Characteristics

$T_a = 25°C$ unless otherwise noted

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BV_{(BR)CEO}$</td>
<td>Collector-Emitter Breakdown Voltage</td>
<td>* $I_C = 10mA, I_B = 0$</td>
<td>40</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$BV_{(BR)CBO}$</td>
<td>Collector-Base Breakdown Voltage</td>
<td>$I_C = 10μA, I_E = 0$</td>
<td>75</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$BV_{(BR)EBO}$</td>
<td>Emitter-Base Breakdown Voltage</td>
<td>$I_E = 10μA, I_C = 0$</td>
<td>6.0</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{CEX}</td>
<td>Collector Cutoff Current</td>
<td>$V_{CE} = 60V, V_{EB(off)} = 3.0V$</td>
<td>10</td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>I_{CBO}</td>
<td>Collector Cutoff Current</td>
<td>$V_{CB} = 60V, I_E = 0$</td>
<td>0.01</td>
<td>10</td>
<td>μA</td>
</tr>
<tr>
<td>I_{EBO}</td>
<td>Emitter Cutoff Current</td>
<td>$V_{EB} = 3.0V, I_C = 0$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{BL}</td>
<td>Base Cutoff Current</td>
<td>$V_{CE} = 60V, V_{EB(off)} = 3.0V$</td>
<td>20</td>
<td></td>
<td>nA</td>
</tr>
</tbody>
</table>

Off Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>$V_{CE(sat)}$</td>
<td>Collector-Emitter Saturation Voltage</td>
<td>* $I_C = 150mA, I_B = 15mA$</td>
<td>0.3</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{BE(sat)}$</td>
<td>Base-Emitter Saturation Voltage</td>
<td>* $I_C = 150mA, I_B = 15mA$</td>
<td>0.6</td>
<td></td>
<td>V</td>
</tr>
</tbody>
</table>

Small Signal Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_T</td>
<td>Current Gain Bandwidth Product</td>
<td>$I_C = 20mA, V_{CE} = 20V, f = 100MHz$</td>
<td>300</td>
<td></td>
<td>MHz</td>
</tr>
<tr>
<td>C_{oob}</td>
<td>Output Capacitance</td>
<td>$V_{CB} = 10V, I_C = 0, f = 1MHz$</td>
<td>8.0</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>C_{bbo}</td>
<td>Input Capacitance</td>
<td>$V_{EB} = 0.5V, I_C = 0, f = 1MHz$</td>
<td>25</td>
<td></td>
<td>pF</td>
</tr>
<tr>
<td>$r_b'C_C$</td>
<td>Collector Base Time Constant</td>
<td>$I_C = 20mA, V_{CB} = 20V, f = 31.8MHz$</td>
<td>150</td>
<td></td>
<td>pS</td>
</tr>
<tr>
<td>NF</td>
<td>Noise Figure</td>
<td>$I_C = 100μA, V_{CE} = 10V,$</td>
<td>4.0</td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>$Re(h_{ie})$</td>
<td>Real Part of Common-Emitter High Frequency Input Impedance</td>
<td>$I_C = 20mA, V_{CE} = 20V, f = 300MHz$</td>
<td>60</td>
<td></td>
<td>Ω</td>
</tr>
</tbody>
</table>

Switching Characteristics

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Test Condition</th>
<th>Min.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_d</td>
<td>Delay Time</td>
<td>$V_{CC} = 30V, V_{EB(off)} = 0.5V,$</td>
<td>10</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_r</td>
<td>Rise Time</td>
<td>$I_C = 150mA, I_B1 = 15mA$</td>
<td>25</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_s</td>
<td>Storage Time</td>
<td>$V_{CC} = 30V, I_C = 150mA,$</td>
<td>225</td>
<td></td>
<td>ns</td>
</tr>
<tr>
<td>t_f</td>
<td>Fall Time</td>
<td>$I_B1 = I_B2 = 15mA$</td>
<td>60</td>
<td></td>
<td>ns</td>
</tr>
</tbody>
</table>

* Pulse Test: Pulse Width $\leq 300μs$, Duty Cycle $\leq 2.0%$
Typical Performance Characteristics

Typical Pulsed Current Gain vs Collector Current

![Typical Pulsed Current Gain vs Collector Current](image1)

Collector-Emitter Saturation Voltage vs Collector Current

![Collector-Emitter Saturation Voltage vs Collector Current](image2)

Base-Emitter Saturation Voltage vs Collector Current

![Base-Emitter Saturation Voltage vs Collector Current](image3)

Base-Emitter ON Voltage vs Collector Current

![Base-Emitter ON Voltage vs Collector Current](image4)

Collector-Cutoff Current vs Ambient Temperature

![Collector-Cutoff Current vs Ambient Temperature](image5)

Emitter Transition and Output Capacitance vs Reverse Bias Voltage

![Emitter Transition and Output Capacitance vs Reverse Bias Voltage](image6)
Typical Performance Characteristics

Figure 7. Turn On and Turn Off Times vs Collector Current

Figure 8. Switching Times vs Collector Current

Figure 9. Power Dissipation vs Ambient Temperature

Figure 10. Common Emitter Characteristics

Figure 11. Common Emitter Characteristics

Figure 12. Common Emitter Characteristics
TRADEMARKS
The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

AccuPower™
Auto-SPM™
Build it Now™
CorePLUS™
CorePOWER™
CROSSVOLT™
CTL™
Current Transfer Logic™
DEUXPEED®
Dual Cool™
EcoSpark™
EfficientMax™
ESBC™
Fairchild®
Fairchild Semiconductor®
FACT Quiet Series™
FACT™
FAST®
FastCore™
FETBench™
FlashWriter™
FPS™
F-PFS™
FRFET®
Global Power Resource™
Green FPS™
Green FPS™ e-Series™
G/Max™
GTO™
IntelliMAX™
ISPLANAR™
MegaBuck™
MICROCOUPLER™
MicroFET™
MicroPak™
MicroPak2™
MllerDrive™
MotionMax™
Motion-SPM™
OptoHiT™
OPTOLOGIC®
OPTOPLANAR®
PDP SPM™
Power-SPM™
PowerTrench®
PowerXS™
Programmable Active Droop™
QFET®
Q5™
Quiet Series™
RapidConfigure™
Save the world, 1 mW/W/kW at a time™
SignalWise™
SmartMax™
SMART START™
SPM™
STEALTH™
SuperFET™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SuperSOT™-11
SyncFET™
Sync-Lock™

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY
Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Fairchild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handling and storage and provide access to Fairchild’s full range of up-to-date technical and product information.

PRODUCT STATUS DEFINITIONS

<table>
<thead>
<tr>
<th>Datasheet Identification</th>
<th>Product Status</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advance Information</td>
<td>Formative / In Design</td>
<td>Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.</td>
</tr>
<tr>
<td>Preliminary</td>
<td>First Production</td>
<td>Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.</td>
</tr>
<tr>
<td>No Identification Needed</td>
<td>Full Production</td>
<td>Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.</td>
</tr>
<tr>
<td>Obsolete</td>
<td>Not In Production</td>
<td>Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.</td>
</tr>
</tbody>
</table>