
Michael Jackson
Millersville University of Pennsylvania
All departments and programs undergo periodic review

How many would like your program to undergo accreditation?

ABET offers to accredit all natural science disciplines (ANSAC: Applied and Natural Science Accreditation Comm.)
Design Goals

Who is it for?

• Physics department chairpersons
• Program and Administrative leaders
• Programs performing a review and Program reviewers
• Faculty in programs facing challenges; faculty interested in improving their programs

• **Key**: flexible, not prescriptive; mindful of local contexts
Outcomes of the EP3 Guide

Help department chairs (& other program leaders)

- Bring together known literature of effective practices
- Collect practices recognized by the community as effective when there is insufficient evidence-based literature
- Encourage discussions in departments on continuous improvement of physics programs using evidence
- External program assessment and review; to improve usefulness of assessment
- Collect information for departments to use in advocating for resources to improve their program
- Engage PER community on departmental needs
Our goals for today are:

• Become aware of this potentially transformative initiative
• Get a sense of the forces driving the effort
• Understand the task force’s vision, goals & forthcoming activities
• Appreciate that outcomes are being designed to help programs and not to hinder or constrain programs
• Know who to contact with questions and input
Physics / STEM Bachelor Degrees

Source: IPEDS

https://www.aip.org/statistics/
Percentage of Women in Physics

Source: IPEDS

https://www.aip.org/statistics/
Physics Bachelor Degrees Awarded to Underrepresented Minorities

Source: IPEDS

https://www.aip.org/statistics/

EP3 guide can help programs provide access to the major

www.aps.org ©2018 American Physical Society E-mail: mjackson@millersville.edu
What is ..

the percentage of high school physics teachers who have a physics degree?

a. 80%
b. 70%
c. 60%
d. Less than 50%
High school classes taught by teacher with degree in the field

https://www.phystec.org/webdocs/shortage.cfm

Source: Schools and Staffing Survey
What do these institutions have in common?

- Elizabeth City State University*
- Midwestern State University
- Prairie View A&M University*
- Southern Oregon University
- Tennessee State University*
- Texas Southern University
- University of Northern Iowa
- University of Southern Maine

*HBCU
Physics Bachelor Degrees

EP3 guide can help programs with recruitment and retention initiatives.

https://www.aip.org/statistics/

www.aps.org/programs/education/statistics/compare.cfm
Section 1: Addressing Current Financial Challenges

Public Higher Education

Higher education has long been described as the "balance wheel" of state budgets. Public colleges and universities are different from other state agencies: they have their own revenue streams, they can adjust their program offerings, and they have some control over employee salaries. As this report will make clear, their budgets are not necessarily flexible, but they are more flexible than the budgets of most state institutions. Accordingly, the states tend to increase their contributions to public higher education when the economy is strong, and cut their contributions when the economy is weak.

![Graph: Percent Change in State Support for Public Higher Education](image-url)

Despite modest increases in 2013 and 2014, state support for public higher education per full-time equivalent student remains nearly 30 percent below spending in 2000, after adjusting for inflation using the State Higher Education Finance cost adjustment.

Regional Accrediting Bodies:

EP3 guide can help with assessment, program review, and make the process meaningful.
EP3 guide can help faculty implement evidence-based instructional strategies.

Active learning increases student performance in science, engineering, and mathematics

Scott Freeman^a,1, Sarah L. Eddy^a, Miles McDonough^a, Michelle K. Smith^b, Nnadozie Okoroafor^a, Hannah Jordt^a, and Mary Pat Wenderoth^a

^aDepartment of Biology, University of Washington, Seattle, WA 98195; and ^bSchool of Biology and Ecology, University of Maine, Orono, ME 04469

Edited* by Bruce Alberts, University of California, San Francisco, CA, and approved April 15, 2014 (received for review October 8, 2013)

To test the hypothesis that lecturing maximizes learning and course performance, we metaanalyzed 225 studies that reported data on examination scores or failure rates when comparing student performance in undergraduate science, technology, engineering, and mathematics (STEM) courses under traditional lecturing versus active learning. The effect sizes indicate that on average, student performance on examinations and concept inventories increased by 0.47 SDs under active learning (n = 158 studies), and that the odds ratio for failing was 1.95 under traditional lecturing (n = 67 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias.

The active learning interventions varied widely in intensity and implementation, and included approaches as diverse as occasional group problem-solving, worksheets or tutorials completed during class, use of personal response systems with or without peer instruction, and studio or workshop course designs. We followed guidelines for best practice in quantitative reviews (*SI Materials and Methods*), and evaluated student performance using two outcome variables: (i) scores on identical or formally equivalent examinations, concept inventories, or other assessments; or (ii) failure rates, usually measured as the percentage of students receiving a D or F grade or withdrawing from the course in question (DFW rate).

The analysis, then, focused on two related questions. Does active learning boost examination scores? Does it lower failure rates?

Results

The overall mean effect size for performance on identical or equivalent examinations, concept inventories, and other assessment was a weighted standardized mean difference of 0.47 (z~95%; n = 225 studies). These results indicate that average examination scores improved by about 6% in active learning sections, and that students in classes with traditional lecturing were 1.5 times more likely to fail than were students in classes with active learning. Heterogeneity analyses indicated that both results hold across the STEM disciplines, that active learning increases scores on concept inventories more than on course examinations, and that active learning appears effective across all class sizes—although the greatest effects are in small (n ≤ 50) classes. Trim and fill analyses and fail-safe n calculations suggest that the results are not due to publication bias.
Brief Timeline

STB*: Requests to APS to do what ACS does: Program Certification

2012: APS leadership asks Committee on Education (COE) to investigate

2013: Working group formed to investigate

2014: Survey of physics chairs, report written

2015: COE discusses, makes recommendation to APS Council
 ABET announces intention to accredit all fields of natural science
 APS Council charges COE to form task force (BPUPP: “Best Practices
 for Undergraduate Physics Programs”)

2016: COE begins process, drafts preliminary documents, recruits task force

2016: Task force begins meeting

2017: Applied for funding, beginning drafts & discussions on underlying
 issues, determination of content & structure of guide, development

2018: Guide development and dissemination begins in earnest

*Since Time Began
APS Council Charge for the Task Force

1. Develop a guide for self-assessment of undergraduate physics programs founded on documented best practices linked to measurable outcomes

 The guide should provide a physics-community-based resource to assist programs in developing a culture of continuous self-improvement, in keeping with their individual mission, context, and institutional type. The guide should include considerations of curricula, pedagogy, advising, mentoring, recruitment and retention, research and internship opportunities, diversity, scientific skill development, career/workforce preparation, staffing, resources, and faculty professional development.

2. Recommend a plan for ongoing review and improvement of this guide under the oversight of the APS Committee on Education
Co-Chair: David Craig, Le Moyne College & Oregon State University
Co-Chair: Michael Jackson, Millersville University of Pennsylvania
• Noah Finkelstein, University of Colorado Boulder
• Courtney Lannert, Smith College and UMass Amherst
• Ramon Lopez, University of Texas at Arlington
• Willie Rockward, Morehouse College
• Gay Stewart, West Virginia University
• Gubbi Sudhakaran, University of Wisconsin-La Crosse
• Kathryn Svinarich, Kettering University
• Carl Wieman, Stanford University
• Lawrence Woolf, General Atomics Aeronautical Systems, Inc.

Staff Liaison: Ted Hodapp Editorial Director: Sam McKagan
AAPT Liaison: Bob Hilborn External Reviewer: Stephanie Chasteen

www.aps.org/bpupp
Structure of the Online EP3 Guide

Chapters:

• Introduction: how to navigate and use the guide
• Assessment of Student Learning: developing a useful and efficient culture of assessment
• Departmental Leadership
• Effective Practices (~25 “sections”)
• Program Review:
 • Guide to reviewers
 • Preparing for a review
• Ancillary material: sample program learning outcomes, assessment plans, etc.
Tentative Section List

• Capstone experiences
• **Career preparation**
• Communications skills
• Computational skills
• Departmental climate
• Equity, diversity, and inclusion
• Ethics
• *Learning spaces and facilities*
• Faculty development
• Implementing research-based instructional practices
• Individualized degree tracks
• Institutional partnerships: dual-degree physics / engineering programs
• Internships

• Introductory Physics for Life Sciences
• Introductory STEM major courses
• Laboratory / experimental skills
• **Learning assistants**
• Mentoring / advising
• Non-STEM major courses
• Online education
• Community Engagement and Outreach
• *Recruiting*
• *Retention*
• **Teacher preparation programs**
• Undergraduate research
• Upper-level physics courses
Example Online Section:

http://apps3.aps.org/bpupp/

High School Physics Teacher Preparation

Description

Physics programs are encouraged to implement, document, publicize, and support pathways to recruit and educate future high school teachers. This includes creating an environment within the program that promotes high school teaching as a valid and desirable career option for students.

Benefits to the Program

Effective Practices

1. Implement a teacher preparation pathway

 Establish a degree track for high school teacher education within the major

 1. In programs with one track, modify the existing degree to allow certification requirements
 2. In programs with multiple tracks, design a teaching track to allow students to smoothly transition among degree options (should be perceived as on par with other career options)
 3. Collaborate with School of Education or its equivalent to accurately communicate required components for licensure (curriculum, field experiences, testing, etc.) to students
 4. Design the program (individually or with other science departments) in collaboration with the College of Education to meet licensure requirements
 5. Learn from existing models, e.g., PhysTEC and UTeach employ practices and strategies for recruiting, preparing, and supporting teachers that begin within the physics program
 6. Be mindful not to add extra expense or time to graduation

 Understand alternate pathways to teacher certification

 Support recent graduates during their transition into the classroom
What the EP3 Guide Is

• Collection of community knowledge and evidence-based practices
• Authored, reviewed, approved by physics community
• *Living* document (not static), with stewardship by APS COE
• Primarily online
• Ethics and diversity included throughout
• Effort to implement evidence-based pedagogy
• Transform mandatory assessment into useful exercise
• Suggestions on how to improve all aspects of a program
• Opportunity to extend reach of education research
What the EP3 Guide is **NOT**

The EP3 guide is **NOT**

- Accreditation
- Program certification
- Mandate to conform
- ‘To-do’ list departments are required to complete
- **Finished (yet)**
EP3 Guide’s Forthcoming Timeline

17/18: Initial drafts; external input on drafting sections; external section reviews by invited department chairs and experts in the field; NSF proposals; establish processes for soliciting section authors and reviewers with diverse points of view in the community; completion of one section

2018: Limited release of first sections; feedback from community; primary push to develop guide sections and solicit feedback (1 completed, 3 received from authors, 3 in development)

2019: Begin workshops on use of guide; training of departmental reviewers

19/20: Release of entire (1st edition) of guide; continued workshops

20/21: First review by COE to update/improve content, updating of review procedures to ensure fidelity of design principles
References

SPIN-UP 2002 (enrollment):
 aps.org/programs/education/undergrad/faculty/spinup/

T-TEP 2012 (teacher education):
 phystec.org/webdocs/TaskForce.cfm

Phys21 2016 (careers):
 compadre.org/phys21/

Vision and Change 2011 (biology):
 visionandchange.org

Active learning:

PTEPA (assessment):
 Physics Teacher Education Program Analysis: phystec.org/thriving
Co-chairs:

- David Craig (craigda@lemoyne.edu)
- Mike Jackson (Michael.Jackson@millersville.edu)

Editorial Director: Sarah “Sam” McKagan (mckagan@aps.org)

APS Lead: Theodore Hodapp (hodapp@aps.org)

AAPT Liaison: Bob Hilborn (rhilborn@aapt.org)

External Evaluator: Stephanie Chasteen (stephanie@chasteenconsulting.com)

www.aps.org/bpupp

This material is based upon work supported by the National Science Foundation under Grant Nos. 1738311, 1747563

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.