Welcome – we’ll get started soon

• Dial in or use your computer’s microphone and speakers.
• Submit questions via the Questions panel on the right.
• This session is being recorded.
• The recording will be sent to you via a follow up email.

Make sure to sign up to receive information about future APS webinars: www.aps.org/careers/guidance/webinars
Teaching Agile Management
The Fast-Paced, Iterative Project Management Style Used From Amazon to NASA

Wouter Deconinck, William & Mary
(now at University of Manitoba)
wouter.deconinck@umanitoba.ca

APS Webinar, August 21, 2019
Outline

Why teach students project management techniques?
- Where do physicists find permanent employment?
- What skills are physicists missing?

What is agile project management?
- How does agile management differ from other approaches?
- What are the mechanics of agile project management?

How can you teach agile management?
- Example of one tutorial activity to start team-based projects.
- Example of how to run an entire team-based capstone course.
Objectives

At the end of this webinar, you will be able to...

- explain what agile management is and how it differs from waterfall,
- understand how agile management can be used in student projects,
- implement a 3-4 hour learning activity to introduce agile management.
Findings of Phys21 (compadre.org/JTUPP)

- “The overwhelming majority of physics bachelor’s recipients are employed outside academia for all or part of their careers.”
- “Since only about one-third of physics Ph.D. recipients end up in academic careers, even students who plan to obtain graduate degrees will benefit from developing skills and knowledge that are valued outside the academic community.”

Promote career readiness: four learning goals to focus on!

- Physics-specific knowledge
- Scientific and technical skills
- Communication skills
- Workplace and professional skills
Findings of Phys21 (compadre.org/JTUPP)

- “The overwhelming majority of physics bachelor’s recipients are employed outside academia for all or part of their careers.”
- “Since only about one-third of physics Ph.D. recipients end up in academic careers, even students who plan to obtain graduate degrees will benefit from developing skills and knowledge that are valued outside the academic community.”

Promote career readiness: four learning goals to focus on!

- Physics-specific knowledge
- Scientific and technical skills
- Communication skills
- Workplace and professional skills
What skills are physicists missing?¹

- Ability to design a system, component or process to meet a specific need
- Ability to function on multi-disciplinary teams
- Ability to recognize value of diverse relationships (customers, supervisors, etc)
- Leadership skills
- Familiarity with basic business concepts (i.e. cost-benefit analysis, funding sources, IP, project management)
- Communication skills (oral and written), esp. how to tailor message to audience
- Real-world experience in companies before graduation
- Awareness of career paths outside of academia

¹Sources: ABET Survey of Applied and Engineering Physics Graduates, Kettering University; APS Workshop on National Issues in Industrial Physics, Industrial Physics Lunches.
Physicists Find Careers Primarily Outside Academic Research

What skills are physicists missing?¹

- Ability to design a system, component or process to meet a specific need
- Ability to function on multi-disciplinary teams
- Ability to recognize value of diverse relationships (customers, supervisors, etc)
- Leadership skills
- Familiarity with basic business concepts (i.e. cost-benefit analysis, funding sources, IP, project management)
- Communication skills (oral and written), esp. how to tailor message to audience
- Real-world experience in companies before graduation
- Awareness of career paths outside of academia

¹Sources: ABET Survey of Applied and Engineering Physics Graduates, Kettering University; APS Workshop on National Issues in Industrial Physics, Industrial Physics Lunches.
Project Management: Waterfall vs. Agile

Waterfall model
- DOE/DOD/NASA: WBSes, gantt charts, long lead time
- Large projects, extensive planning
- Reqts drive cost and schedule

Agile management model
- Start-ups and collections of small teams, changing reqts
- Current budget and schedule drive features/priority iteratively

Image credit: Scaled Agile Inc.
Project Management: Waterfall vs. Agile

Waterfall
- Requirements
- Design
- Implementation
- Verification

Documents
Unverified System
System

Incremental delivery

Image credit: Scaled Agile Inc.
A Typical Agile Iteration Cycle

- Plan: user stories/tasks backlog
- PO: product owner/customer
- SM: scrum master/team leader
- Review: demo of latest prototype
- Retro: retrospective of team performance/dynamics

Image credit: Scaled Agile Inc.
A Typical Agile Iteration Cycle

Timeline for sprints of 1-2 weeks

- 1-2 hour sprint planning with product owner
- Daily 10-minute stand-up meetings led by scrum master
- 1-2 hour sprint demonstration with product owner
- 1 hour retrospective after demo without product owner

Roles and responsibilities

- The product owner decides what should be done during a sprint
- The scrum master guides the team in prioritization, resources
- The team collectively decides how long each task will take
A Typical Agile Iteration Cycle

Timeline for sprints of 1-2 weeks

• 1-2 hour sprint planning with product owner
• Daily 10-minute stand-up meetings led by scrum master
• 1-2 hour sprint demonstration with product owner
• 1 hour retrospective after demo without product owner

Roles and responsibilities

• The product owner decides what should be done during a sprint
• The scrum master guides the team in prioritization, resources
• The team collectively decides how long each tasks will take

“Scrum, but…”

• Students are not full-time employees, have complicated schedules
• Deviations in format while trying to stay true to the spirit
Creating an Agile Workplace Culture

Agile Manifesto (agilemanifesto.org)

- Individuals and interactions over processes and tools
- Working products over comprehensive documentation
- Customer collaboration over contract negotiation
- Responding to change over following a plan

“While there is value in the items on the right, we value the items on the left more.”

Related initiatives

- User-Centered Design, Lean, Toyota Production System, DevOps,…
- Even novels have been written introducing these approaches: The Goal (Eliyahu Goldratt), The Phoenix Project (Gene Kim et al.)
Creating an Agile Workplace Culture

Elements of a workplace “culture”

- **Beliefs**: shared ways of understanding the world
- **Artifacts**: physical things endowed with meaning
- **Rituals**: repeated actions or processes with meaning
- **Also**: values, attitudes, heroes, stories,…

Agile’s cultural elements

- **Beliefs**: self-organized and empowered teams are more productive
- **Artifacts**: kanban boards with post-its, physical prototypes,…
- **Rituals**: moving a task, stand-ups, demos, retrospectives,…
- **Values**: iteration, collaboration; **Heroes**: manifesto authors, coaches; **Stories**: narratives of a synthetic persona interacting with the product

“Build projects around motivated individuals. Give them environment and support they need. Trust them to get the job done.”
Creating an Agile Workplace Culture

Elements of a workplace “culture”

- **Beliefs**: shared ways of understanding the world
- **Artifacts**: physical things endowed with meaning
- **Rituals**: repeated actions or processes with meaning
- Also: values, attitudes, heroes, stories,…

Agile’s cultural elements

- **Beliefs**: self-organized and empowered teams are more productive\(^a\)
- **Artifacts**: kanban boards with post-its, physical prototypes,…
- **Rituals**: moving a task, stand-ups, demos, retrospectives,…
- **Values**: iteration, collaboration; **Heroes**: manifesto authors, coaches; **Stories**: narratives of a synthetic persona interacting with the product

\(^a\) “Build projects around motivated individuals. Give them environment and support they need. Trust them to get the job done.”
Implementation of An Agile Workplace

Easy visualization of “work in progress” (WIP), artifacts

- Reduce WIP, “batch size of one” in manufacturing, avoid multi-tasking
- Make status of WIP visible, *kanban* boards (todo, ongoing, done)
Core Components of Agile Management

Kanban Board

<table>
<thead>
<tr>
<th>Backlog</th>
<th>To Do</th>
<th>Ongoing</th>
<th>Done</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>D</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>C</td>
<td></td>
</tr>
</tbody>
</table>
Implementation of An Agile Workplace

Easy visualization of “work in progress” (WIP), artifacts

- Reduce WIP, “batch size of one” in manufacturing, avoid multi-tasking
- Make status of WIP visible, *kanban* boards (todo, ongoing, done)
Implementation of An Agile Workplace

Easy visualization of “work in progress” (WIP), artifacts

- Reduce WIP, “batch size of one” in manufacturing, avoid multi-tasking
- Make status of WIP visible, *kanban* boards (todo, ongoing, done)

Frequent feedback on project progress and people performance, rituals

- Daily or near-daily short stand-up meetings
- Iterative sprints with customer/client/end user
- Retrospections on team performance/group dynamics
Implementation of An Agile Workplace

Easy visualization of “work in progress” (WIP), artifacts
- Reduce WIP, “batch size of one” in manufacturing, avoid multi-tasking
- Make status of WIP visible, kanban boards (todo, ongoing, done)

Frequent feedback on project progress and people performance, rituals
- Daily or near-daily short stand-up meetings
- Iterative sprints with customer/client/end user
- Retrospections on team performance/group dynamics

Continuous improvement, beliefs
- Learn by doing, learn by failing: don’t expect infallible teams
- Encourage a culture of experimentation among teams
- “Affordable loss principle” instead of focusing on possible gain
Agile in Education

Related movements (K-12 to higher ed)

- EduScrum, Agile in Education
- Iterative, reflective, collaborative, and learning based on trust instead of hierarchy and assessment

Building a **growth mindset** on top of a skill set
Agile Team-Based Physics Design Courses at W&M I

Context at W&M

- Liberal-arts, no eng/med, subset of depts have graduate programs
- Physics department is largest STEM graduate research department
- Regional partners: NASA Langley, Jefferson Lab, Virginia Institute of Marine Science

Robo-Ops: Design and development of tele-robotic rover (2016)

- Semester-long class of 15 students (50% physics majors), 3 sub-teams
- Single project, agile project management (with many lessons learned)
- Co-supervisor: aerospace engineer at NASA Langley
- Outcome: third place on competition at Johnson Space Center
Agile Team-Based Physics Design Courses at W&M II

Agile Innovation: NASA’s Lab77 technology incubator (2017)

- Semester-long class of 15 students (30% physics majors)
- Problem finding, ideation, prototyping into minimum viable product
- Co-supervisor: incubator head at NASA Langley
- Outcomes: mental health startup and novel drone-borne bacterial sampling system

Agile Senior Research Capstone Course (2018-19)

- Year-long senior project with 5 graduating physics majors
- Project entirely outside area of expertise of adviser (scalable)
- Co-supervisors: mission engineer at NASA Langley, agile consultant
- Outcome: MVP of ejectable data recorder for NASA mission
 NASA put project out for bids (waterfall) and didn’t get any…
Agile Senior Research Capstone Course

Implementation

- Assigned roles: SM, scribe, archivist, ambassador, devil’s advocate (only to get started and to give students initial responsibility)
- “Scrum, but” students are part-time researchers so slower paced
- Stand-up meeting (15 mins) led by SM every 2 days, at university
- Sprint demonstration (1 hour) with PO every 3 weeks, on location
- Followed by retrospective (30 mins) and next sprint planning (1 hour)
- Physical support tools: shared office/workspace, whiteboards, post-its
- Online support tools: Trello (kanban board), Slack (virtual space), Zoom
- Results at teamagileimpact.com
From Goals to Tasks

- Start with overall goals: “At the next demo, we would like to see functionality X” (driven by product owner)
- Develop list of tasks that can be completed by single person in a single setting (by entire team)
- Three C’s: Card, Conversation, Confirmation (or Criteria)

Tasks based on card template

- User stories: “As a <role>, I want <activity> so that <value>”
 - e.g. “As a NASA LOFTID mission planner, I want to recover the payload after reentry so that stored data can be analyzed.”
- All cards assigned a weight: 1, 2, 3, 5, 8 (roughly equates to hours), longer must be split up in smaller parts to remain manageable
- Multiple team members should be able to complete any card’s task
Agile Senior Research Capstone Course

<table>
<thead>
<tr>
<th>NASA EDR Conceptual Design</th>
<th>NASA Ejectable Data Recorder</th>
<th>Team Visible</th>
<th>WD</th>
<th>AS</th>
<th>C</th>
<th>GD</th>
<th>9</th>
<th>Invite</th>
</tr>
</thead>
</table>

To Do (Sprint Backlog) (26 left)...
- Order a print of the Drill in Windform. (1 - HIGH)
- Print new 45 degree angle full size Dreidel/Pill shell shape (2 - HIGH)
- Construct full potted/sealed shell shape with electronic components. (3 - MEDIUM)
- Put completed and full shell shape in water to see if it is buoyant. (1 - HIGH)
- Print the Drill in Onyx with kevlar fibers on the Markforges. (2 - MEDIUM)
- Cut/drill the syntactic foam core (as many as possible). (3 - MEDIUM)
- Set date for launch, talk to WM campus police. (1 - HIGH)
- Order a 9-axis accelerometer on the Matsaika launch? (1 - HIGH)
- + Add another card

In Progress - WIP: 1-2 / person - “pair” (2 people) on tasks where possible...
- Decide on a height for the Tungsten, so that we know where to cut the syntactic foam. (1 - HIGH)
- Determine mass of EDR without tungsten mass. (1 - HIGH)
- Contact CRP about a Windform print of the final shell (with electronics mounts and seal). (3 - MEDIUM)
- Set date for launch, talk to WM campus police. (1 - HIGH)
- + Add another card

Sprint 9: Done...
- Modify CAD design of the Drill (see description). (1 - HIGH)
- Buy PVC and appropriate connectors for 4" spud gun. (1 - HIGH)
- Order 2-part potting epoxy for Tungsten mass. (1 - MEDIUM)
- Bring into office the Feather MO’s and broadboards, as well as gifts from Gero. (1 - HIGH)
- Find dimensions of the electronic components in one package. (1 - MEDIUM)
- Print a sample of Onyx (1 - HIGH)
- + Add another card

Hold (Stretch Goals)...
- (HIVIZ) Decide on type of location device.
- Perform Parabolic Spud Gun Launch Test (3 - HIGH)
- Perform Parabolic Test Data Analysis (1 - MEDIUM)
- Make code for parabolic test (5 - MEDIUM)
- Get polyethylene spray?
- Re-solder the feather and GPS that will go into the test shell. (1 - MEDIUM)
- + Add another card

Won’t Do...
- Modify the spud gun to 4in diameter (1 - HIGH)
- Get Wouter to make a 4 inch diameter spud gun. (1 - HIGH)
- Buy filler foam (1 - LOW)
- Get shaped tungsten mass through McMaster. (5 - MEDIUM)
- Research mechanical seal interface (3 / low)
- Model center of buoyancy and center of mass for shapes we are...
CubeSat Scrum: An Agile Tutorial Activity

Problem

• Year-long team-based projects are not possible for everyone
• Needed introductory activity to familiarize students with agile
• Available agile tutorials are mainly focused on software development
CubeSat Scrum: An Agile Tutorial Activity

Problem

- Year-long team-based projects are not possible for everyone
- Needed introductory activity to familiarize students with agile
- Available agile tutorials are mainly focused on software development

Solution

- Short activity with cheap materials that introduces students to the core components of agile management of hardware project
- Subject similar to an experimental scientific design project
- Sufficient degrees of design freedom, not intended as a lab activity

The CubeSat Challenge at cubesatscrum.com (CC BY-NC-SA)
(by BEC, Berkana Enterprise Consulting, our agile consultant)
CubeSat Scrum: An Agile Tutorial Activity

The PIPELINE Network

The PIPELINE Network is a three year project bringing together the efforts of seven institutions to create and document new approaches to teaching innovation and entrepreneurship in physics.

The project is charged with developing research instruments to investigate the link between physics innovation and entrepreneurship (PIE) education experiences and corresponding student and faculty attitudes. These deliverables will be made available via web, email, and meetings.

The project is advised by an industry team and by three institutions with strong innovation and entrepreneurship focused physics programs: Carthage College, Case Western Reserve University, and Kettering University.

PIPELINE Curricular Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Developed By</th>
<th>Level</th>
<th>Duration</th>
<th>Phys21 Area(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Innovation Module</td>
<td>Loyola University MD</td>
<td>Advanced (Junior/Senior)</td>
<td>300 - 375 Minutes class time, plus extra curricular activities</td>
<td>Physics Specific Knowledge, Workplace Relevant</td>
</tr>
</tbody>
</table>
CubeSat Scrum: An Agile Tutorial Activity

CubeSat Materials

Activity Description:
Competitive team-based workshop

Link to Resources:
Github account for cubesat-scrum

Level: Any

Relevant Phys21 Area(s):
Communication Skills, Professional and Workplace Skills

Learning Objectives:
Learn how team-based projects can be effectively managed with agile methodology

Duration:
Ideally 4 hours, at least 3 hours

Target Audience:
Undergraduate or graduate students
Cubesat Scrum: An Agile Tutorial Activity

Cubesat Scrum (by APS PIPELINE)

This repository contains Cubesat Scrum objectives, lesson plan, and instructor notes. These materials were developed with support of the APS PIPELINE project.

Learning objectives

- Explain what agile management is and how it differs from waterfall
- Understand how agile management can be used in student projects
- Explore a 3-4 hour activity for you to introduce agile management
- Experience empowerment that students feel when using agile management

Required materials

The paper templates are available in this repository. For each team print a copy of these templates on card stock (65 lbs weight works well, heavier becomes difficult to fold, user story cards on p45 through end can be 2-up). You will also need to get some easily obtained crafts materials.

Additional teaching materials for the Cubesat Scrum workshop, including K-12 lesson plans developed by students at Old Dominion University, are available at https://cubesatscrum.com/ or directly on DropBox.

Schedule and roles

This activity will take up to 4 hours to complete. A suggested schedule is available. You may also want to consider the different roles that all participants in the activity will be asked to play. You will need at least...
CubeSat Scrum: An Agile Tutorial Activity

Starting point: cubesat mission design
- Ambitious & vague design project outside of area of expertise (similar to how a student feels about a large senior design project)

Agile management condensed
- Sped up agile project with 3 sprints of 3 ‘working days’ of 10 minutes
- Maintain all rituals: sprint planning, stand-up, demo, retrospective
CubeSat Scrum: An Agile Tutorial Activity

http://cubesatscrum.com/

Teaching Agile Management
IceCap CubeSat Mission Objective

- Satellite used for measuring ice melt and solar reflection has been re-tasked.
- There is an urgent need to fill this gap in coverage in support of the United Nations work on global warming.
- The IceCap CubeSat mission will fill this need with a polar orbit optical imaging and solar sensors.
- The mission must launch within 4 months to meet the desired window of coverage.

http://cubesatscrum.com/
1. CubeSat Frame

As a mission commander I want a frame to house and protect my CubeSat components so that my mission can be launched and executed.

Acceptance Criteria:
- All the open areas of the cubesat must be cut out due to weight
- Any mission payload that uses cameras or sensor must have sufficient room in the frame to operate.
- There must be 4 rails that surround the sides of the cubesat that fit in the P-POD rail system
- The CubeSat must be able to open to inspect the internal components.
- The external frame must have the name and logo placed on it
- There must be remove before flight pin Cubesat

http://cubesatscrum.com/

2. Solar Array / Power Storage

As a CubeSat in orbit I want solar power for all my components at all times so that my mission will be a success.

Acceptance Criteria:
- Solar Cells with sufficient power to run and charge the batteries
- Batteries that can run the components while behind the earth
- Solar Array will fold to conform with P-POD launcher
- Calculate the power produced

Documentation: Complete the Orbital Mission Power Management Worksheet

http://cubesatscrum.com/

3. Communication

As a CubeSat I want to have a communication system, Transmitter and Receiver, Send and Receive So that I can communicate Housekeeping data, commands, and to relay payload data.

Acceptance Criteria:
- Assemble Cellular / Radio modem communication Board
- Connect to At least 2 arms of a tape measure antenna
- Power Amplifier to boots signal
- Antenna will auto deploy after exit from P-Pod
- Antenna will not interfere with the solar array

http://cubesatscrum.com/

4. Stabilization

As a CubeSat Mission I need to have Stabilization so that my payload camera can be oriented on my mission objectives.

Acceptance Criteria:
- Assemble Magnetic Rod Stabilization component
- Integrated to Attitude Sensing Component
- Must run continuously for Solar and camera pointing
- Integrate with Attitude Cameras for positioning

http://cubesatscrum.com/
5. Navigation GPS

As a CubeSat Mission
- I need to have GPS Navigation
- So that I can track my mission, manage commutation, take pictures, move from Sun to dark power modes.

Acceptance Criteria:
- Assemble GPS component assembly
- GPS is next to the CPU in the stack
- Must run continuously for Solar and camera pointing.

http://cubesatscrum.com/

6. Payload

As a mission product owner
- I want my payload to have optical sensors
- So that I can capture images to transmit them to the ground station.

Acceptance Criteria:
- The CubeSat will have a payload camera
- The frame will accommodate the objective lenses of the camera
- The cubesat payload camera will be able to operate at all times.

http://cubesatscrum.com/

7. Remove Before Flight

As a mission product owner
- I want to incorporate my remove before flight tag
- So that my cubesat will go live when it is removed.

Acceptance Criteria:
- The CubeSat will have a remove before flight tag
- The remove before flight tag will be connected to On off Switch
- Placement of on off switch location as needed

http://cubesatscrum.com/
CubeSat Scrum: An Agile Tutorial Activity

8. Launch Vehicle Selection

As a mission product owner
I want to have a launch vehicle
So that I can fly my mission

Acceptance Criteria:
• Select from the list of options the right launch vehicle.
• Ensure that cost is kept to a minimum.
• Ensure that orbit is polar.
• Ensure that size is appropriate.

Select Your Launch Option

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Orbit</th>
<th>Launch Date</th>
<th>Size Available</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta II</td>
<td>High Polar Elliptical North South Axis 5 Deg</td>
<td>3 Months</td>
<td>1 U</td>
<td>$50,000</td>
</tr>
<tr>
<td>Atlas V</td>
<td>Retrograde Equatorial Axis 10 Deg</td>
<td>3 Months</td>
<td>1 U</td>
<td>$40,000</td>
</tr>
<tr>
<td>SORAI</td>
<td>Polar North South Axis 7 Deg</td>
<td>1 Month</td>
<td>2 U</td>
<td>$37,000</td>
</tr>
<tr>
<td>Delta II</td>
<td>Polar North South Axis 7 Deg</td>
<td>1 Month</td>
<td>3 U</td>
<td>$130,000</td>
</tr>
<tr>
<td>Minotaur 1</td>
<td>Postggrade Equatorial Axis 10 Deg</td>
<td>5 Months</td>
<td>1 U</td>
<td>$80,000</td>
</tr>
<tr>
<td>Delta IV</td>
<td>Polar North South Axis 5 Deg</td>
<td>6 Months</td>
<td>1 U</td>
<td>$40,000</td>
</tr>
<tr>
<td>Lynx Mark III</td>
<td>Polar North South Axis 0 Deg</td>
<td>3 Months</td>
<td>2 U</td>
<td>$60,000</td>
</tr>
<tr>
<td>Pegasus XL</td>
<td>Polar North South Axis 15 Deg</td>
<td>1 Year</td>
<td>3 U</td>
<td>$100,000</td>
</tr>
<tr>
<td>Falcon 9</td>
<td>Retrograde Equatorial Axis 10 Deg</td>
<td>5 Months</td>
<td>1 U</td>
<td>$40,000</td>
</tr>
<tr>
<td>Delta IV</td>
<td>Polar North South Axis 7 Deg</td>
<td>4 Months</td>
<td>1 U</td>
<td>$35,000</td>
</tr>
<tr>
<td>Delta II</td>
<td>Postggrade Equatorial Axis 5 Deg</td>
<td>2 Months</td>
<td>2 U</td>
<td>$50,000</td>
</tr>
<tr>
<td>Go Launcher 2</td>
<td>Polar North South Axis 5 Deg</td>
<td>5 Months</td>
<td>3 U</td>
<td>$90,000</td>
</tr>
<tr>
<td>Super Strypi</td>
<td>Retrograde Equatorial Axis 10 Deg</td>
<td>6 Months</td>
<td>1 U</td>
<td>$50,000</td>
</tr>
<tr>
<td>Pegasus XL</td>
<td>Polar North South Axis 0 Deg</td>
<td>3 Months</td>
<td>1 U</td>
<td>$25,000</td>
</tr>
<tr>
<td>Minotaur 1</td>
<td>Polar North South Axis 7 Deg</td>
<td>1 Year</td>
<td>2 U</td>
<td>$10,000</td>
</tr>
<tr>
<td>Delta IV</td>
<td>Retrograde Equatorial Axis 10 Deg</td>
<td>5 Months</td>
<td>3 U</td>
<td>$80,000</td>
</tr>
<tr>
<td>Pegasus XL</td>
<td>Postggrade Equatorial Axis 5 Deg</td>
<td>4 Months</td>
<td>1 U</td>
<td>$45,000</td>
</tr>
<tr>
<td>Delta II</td>
<td>Polar North South Axis 7 Deg</td>
<td>2 Months</td>
<td>1 U</td>
<td>$60,000</td>
</tr>
<tr>
<td>Delta II</td>
<td>Retrograde Equatorial Axis 10 Deg</td>
<td>1 Year</td>
<td>2 U</td>
<td>$75,000</td>
</tr>
<tr>
<td>Orion 6</td>
<td>Polar North South Axis 4 Deg</td>
<td>4 Months</td>
<td>2 U</td>
<td>$50,000</td>
</tr>
</tbody>
</table>

Orbital Path Map
Sketch your selected Orbital based on launch option here.

http://cubesatscrum.com/
As a mission commander
I want my cubesat to pass the prelaunch checklist
So that I can be cleared for launch and fly my mission.

Acceptance Criteria:
• The CubeSat will conform to the mission checklist
• All components required will be present
• Weight conforms to size 1.33 KG per 1U
• Mission will be chair flown. Instructor will be mission command.

Mission Control Pre Launch Checklist

<table>
<thead>
<tr>
<th>Component</th>
<th>Power Required</th>
<th>Cost Estimate</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame / Structure</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antenna / Active or Passive</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power / Generation /Storage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solar Array</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude Determination</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitude Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propulsion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Payload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove Before Flight</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Orbital Mission Power Management

<table>
<thead>
<tr>
<th>Component</th>
<th>DAY</th>
<th>Night</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>10</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>100</td>
</tr>
</tbody>
</table>

Stabilization
Communication
Payload
Attitude
Solar Cells
Flight Comp
Battery
CubeSat Scrum: An Agile Tutorial Activity

Frame
- Weight: 25 grams each side
- Used with other frame sides
- Power consumption: None

Frame Cover
- Weight: 10 grams
- Used with other frame sides
- Power consumption: None

Ion Engine Frame
- Weight: 25 grams
- Used with other frame sides
- Power consumption: None

Camera Frame
- Weight: 25 grams
- Used with other frame sides
- Power consumption: None

Solar Cells
- Weight: 25 grams each
- Makes: 2 power

http://cubesatscrum.com/
CubeSat Scrum: An Agile Tutorial Activity

Power Supply / Storage
- Weight 300 Grams
- 1 Power / Can supply 10 and store 50

GPS Antenna / Positioning
- 100 grams
- 1 Power
- CPU Attitude-determination star sensor

Payload Camera
- 100 Grams
- 2 Power

Mission Computer CPU
- 100 Grams
- 1 Power
- CPU Power Attitude Sense

Teaching Agile Management
Activity roles

• NASA directorate (i.e. instructor):
 • keeps everyone on a strict time schedule,
 • ensures that tasks are written on post-its and moved on the kanban,
 • ensures not work is done during the non-work times.

• Scrum master (SM) per team (i.e. a regular team member):
 • leads the sprint planning, stand-ups, demonstration, and retrospective,
 • does not act as a boss, but instead enables team productivity.

• Product owner (PO) per team (i.e. not a regular team member):
 • acts as mission director for the project,
 • participates in sprint planning and demonstration,
 • expresses priorities and goals.

• Team members (everyone else), from 5 to 10 members per team:
 • write cards of tasks as they become apparent,
 • move their cards through the kanban columns,
 • stay focused on the tasks of the current sprint.
CubeSat Scrum: An Agile Tutorial Activity I

Introduction (15 min)

Sprints (3 x 45 min)

Close-out
- “Chair flying” (15 min)
- Activity retrospective (15 min)
CubeSat Scrum: An Agile Tutorial Activity II

Sprint 1 (45 min)
- Planning (5 min)
- Day 1: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Day 2: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Day 3: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Demo (5 min)
- Retro (5 min)

Sprint 2 (45 min)
- Planning (5 min)
- Day 1: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Day 2: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Day 3: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Demo (5 min)
- Retro (5 min)

Sprint 3 (45 min)
- Planning (5 min)
- Day 1: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Day 2: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Day 3: (10 min)
 - Stand-up (2 min)
 - Work (8 min)
- Demo (5 min)
- Retro (5 min)
CubeSat Scrum: An Agile Tutorial Activity
CubeSat Scrum: An Agile Tutorial Activity II
CubeSat Scrum: An Agile Tutorial Activity III
Outline

Why teach students project management techniques?
- Where do physicists find permanent employment?
- What skills are physicists missing?

What is agile project management?
- How does agile management differ from other approaches?
- What are the mechanics of agile project management?

How can you teach agile management?
- Example of one tutorial activity to start team-based projects.
- Example of how to run an entire team-based capstone course.
Teaching Agile Management

The Fast-Paced, Iterative Project Management Style
Used From Amazon to NASA

Wouter Deconinck, William & Mary
(now at University of Manitoba)
wouter.deconinck@umanitoba.ca

APS Webinar, August 21, 2019

Supported by the NSF under Grant No. DUE-1625872, APS PIPELINE project. Opinions are not necessarily the views of the NSF.
Teaching Agile Management
The Fast-Paced, Iterative Project Management Style
Used from Amazon to NASA

To learn the latest in physics innovation and entrepreneurship education, please sign up for our monthly PIE Newsletter: go.aps.org/innovation

Make sure to sign up to receive information about future APS webinars: www.aps.org/careers/guidance/webinars