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Modeling Actomyosin Networks, 
Lamellipodia Growth and Retrac;on

 Modeling Filopodia Growth and 
Retrac;on 

✏ K. Popov, J. Komianos, G. A. Papoian, PLOS Comp Bio, 2016, DOI:10.1371/journal.pcbi.1004877  

Whole-Cell Modeling 

We study how cells move by crea;ng 
stochas;c models for the growth and 
retrac;on of lamellipodia and filopodia, 
which create and extend from the leading 
edge of a cell.

Chroma;n and 
Histone Dynamics

D. A. Potoyan and G. A. Papoian*; Proc. Natl. Acad. Sci. 
USA; 2012, 109, 17857-17862.

D. A. Potoyan and G. A. Papoian; JACS; 
2011, 133, 7405-7415.

The Effects of Histone Acetyla;onHistone Energy Landscapes

We study the structure and dynamics 
of chroma;n: the DNA-protein 
complex within the nucleus. We 
model modified histone tails as well 
as en;re nucleosomes using all atom 
simula;ons.



Protein Dynamics, Free Energy Landscapes 
and Calcula;ons

Unfolded Protein Dynamics

P. I. Zhuravlev, C. K. Materese and G. A. Papoian;  J. Phys. Chem. B (Feature ArXcle; July 2 2009 Journal Cover); 2009, 113, 8800

Protein Dynamics

•Compact state 
•Local rearrangements 
•Viscosity independent

•Swollen state 
•Global rearrangements 
•Viscosity dependent

We study the structure and dynamics 
of folded and unfolded proteins using 
Energy Landscape theory, examining 
different possible conforma;ons and 
beQer understanding internal fric;on.

Coarse-grained Force Fields and Protein 
Folding Predic;on

A. Davtyan, W. Zheng, N. Schafer, C. ClemenX, P. G. 
Wolynes and G. A. Papoian,  JPCB, (2012), 116, 
8494 

Protein and DNA 
Coarse Graining

Coarse-grained DNA Force Fields

A. Savelyev and G. A. Papoian; Proc. Natl. Acad. Sci. USA; 2010, 107, 20340–5.

We con;nue to improve our coarse-
grained force fields to predict protein and 
DNA structure, which draw from physically 
mo;vated terms as well as a 
bioinforma;cal term.

Predic;ng Ubiqui;n Dimeriza;on



The most famous video in biology

This video is taken from a 16-mm movie made in the 1950s by the late David 
Rogers at Vanderbilt University. It was given to Thomas P. Stossel via Dr. Victor 
Najjar, Professor Emeritus at Tufts University Medical School and a former 
colleague of Rogers.

Hill, M.A. 2017 Embryology Movie - Neutrophil chasing bacteria.

Richard Feynman: What I cannot create, I do not understand
… or to add a modern twist: What I cannot simulate, I do not understand
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Neurodevelopment 2014

A growing neural dendrite
actin (purple), microtubules (green)

The Actin Cytoskeletal Network

A biological active matter system


Driven by consumption of energy, 
transferred into mechanical work


Crucial role in many aspects of cell 
shape, function, and dynamics


Many constituents that create 
collective, emergent behavior



   Dendritic nucleation/Array treadmilling model


• Pollard and Borisy, Cell 112, 453 (2003).

• T.D Pollard, L Blanchoin, R.D Mullins

Annu. Rev. Biophys. Biomol. Struct., 545–576 (2000)

Regulation of 
force generation is 

complicated!



3D simulation region is divided 
into compartments. 


Diffusion (Actin, Capping protein, 
Arp2/3) between compartments.


Chemical reactions in 
compartments:


Polymerization, 
Depolymerization, Capping, 
Branching...


Monte Carlo algorithm to 
generate stochastic trajectories

✏ K. Popov, J. Komianos, G. A. Papoian, 
PLOS Comp Bio, 2016, DOI:10.1371/
journal.pcbi.1004877  
✏ L. Hu and G. A. Papoian, Biophys. J.; 
2010, 98,1375 
✏ L. Hu and G. A. Papoian, J. Phys.: 
Condens. Matter; 2011, 23, 374101

MEDYAN: Mechanochemical Dynamics of Active Networks



✏ K. Popov, J. Komianos, G. A. Papoian, PLOS Comp Bio, 2016, DOI:10.1371/journal.pcbi.1004877  

Spatially resolved chemistry



MEDYAN: Mechanics



http://medyan.org



A Simulation Trajectory Snapshot





Membrane crumpling in hyperosmotic solution

Tension: F = ks/(2A0)(A�A0)
2

Bending: F =

Z
2kb(H � c0)

2
dA

Volume Conservation: F = kV /(2V0)(V � V0)
2

Volume Exclusion: F = kvol

Z
dA/|rb � rp|4

Haoran Ni



Towards Simulating a Whole Cell



Towards Simulating a Whole Cell





Surface Reaction-Diffusion: Receptor Signaling & Clustering



• In vivo studies of cytoskeletal motions 
reveal heavy-tailed distributions of event 
sizes - similar to Gutenberg-Richter law

• “Cytoquakes” have been introduced as 
large, sudden events in cytoskeletal 
dynamics

Shi, Y., et al., PNAS (2019)

Cal Floyd will talk 
about this work 

on Friday



Upregulating Myosin Activity

Qin Ni



http://awsem-md.org
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 Elastic network models

 Go models


DNA:
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 Genome modeling


 Coarse-grained methodologies

Title: Coarse-Grained Modeling of Biomolecules





AWSEM’s Backbone Model



AMH’s Neural Network Origins
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Then, the following structuralHamiltonianwould allow recognition of a set
of conformational memories:

H
str = *

…

�

…

iëj
✓(rij * r�ij). (4.6)

Finally, we can combine the sequence and structural recognition by
requiring that a given protein sequence in a speci�c conformation to be low
energyonlywhenbothsequenceandstructurearewellmatched tooneof the
database memories. This logical AND statement is accomplished by simple
multiplication of the corresponding terms in the two Hamiltonians [20]:

H
str*seq = *

…

�

…

m,n

…

iëj
��ij(qi, qj, q

�
i , q

�
j )✓(rij * r�ij), (4.7)

where we have introduced a residue attribute correlation function,

��ij(qi, qj, q
�
i , q

�
j ) í q�i q

�
j qiqj + q�i qi + q�j qj, (4.8)

which indicates whether the target and memory residue pairs, i and j, are
similar or not. If the attributes, {qi}, may only adopt values ±1, then, ��ij is
+3 if there is exact match between the target and memory pair attributes,
otherwise it is *1. Figure 4.4a shows an example of structure prediction
using this Hamiltonian.

When simulating the folding protein chain, the residues cannot move
independently, hence, it is also necessary to introduce interactions that con-
strain the connectivity of neighboring residues along the polymer, either
by using harmonic distance constraints or by employing signi�cantly more
elaborate backbone Hamiltonian like that discussed in the next section.
Hence, the associative memory Hamiltonian (AMH) family of potentials
minimally contains the following terms [21]:

H
AMH = H

bb *
…

�

…

m,n

…

iëj
��ij(qi, qj, q

�
i , q

�
j )✓(rij * r�ij), (4.9)

where Hbb indicates polymer backbone preferences. Early applications of
Hamiltonian (Equation 4.9) revealed that stochastic dynamics would allow
a storage capacity on the order of 0.5N, where N is the target protein chain
length [75]. In particular, using as input sequenceswhichwere obtainedby a
modest degradation of one of thememory protein sequences viamutations,
molecular dynamics or Monte Carlo search would still lead to the recall of
near-native structure of the input protein sequence.

where,
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= 1 if rij≈rij𝞵 and,



Associated Memory Hamiltonians (AMH) for Protein 
Structure Prediction are Introduced

Friedrichs & Wolynes, Science, 1989 Goldstein et al, PNAS, 1992



The AWSEM Hamiltonian

✏ Davtyan, Schafer, Zheng, Clementi, Wolynes, Papoian, J. Chem Phys B, 2012, 116, 1709–1715
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having the following form:

H
AWSEM = H

bb +H
AM +H

PMF. (4.11)

In the next section, we elaborate on theHbb andHPMF terms. TheHAM

term has undergone an interesting transformation over the last 20 years.
First, instead of global matching or alignment of target proteins to memory
proteins, much shorter fragments are now used in AWSEM, on the order
of 10 residues. The intuition behind this choice originates from address-
ing the great di�culty ofmodelingmany-body local interactions (e.g., local
packing or polarizability) via largely pairwise PMF terms. Furthermore,
since it is usually easy to �nd 10-residue fragments in the database of mem-
ory proteins (where the latter may be potentially completely unrelated to
the target protein) with nearly complete matching of target and memory
sequences, all �(qi, qj, q

�
i , q

�
j )s are currently set to 1 in the latest versions

of the code (2015). Hence, the fragment memory (FM) term in AWSEM
reverts to a simple Hop�eld-like form (in structure space—compare with
Equation 4.6)

H
FM = *

…

�

…

iëj
✓(rij * r�ij), (4.12)

introducing matched memory structures as mini-funnels on the energy
landscape, which weakly trap the fragment when the molecular dynamics
trajectory happens to cruise near a particular FM’s basin of attraction. A key
idea here is the harmony between the local and tertiary structures [28]: the
local chain conformation induceddue to aparticularmemorywill be greatly
stabilized if simultaneously favorable interactions occur between the frag-
ment and its surroundingchain.Althoughcurrently [31] sequence informa-
tion is only used to select FMs, it is possible that in the future development
of theHFM term, for example, when longer fragments are used or explicitly
includes the structural context of the FM (such as its surface accessibility)
as well, sequence correlations could again be explicitly taken into account
by optimizing the corresponding �(qi, qj, q

�
i , q

�
j )s.

Finally,wewould like toraise the followingquestion:Areneuralnetwork
approaches to studying protein folding merely empirical, or does this per-
spective bring fundamental insights that otherwise might be overlooked?
This question reveals some con�ict between the reductionist view that
folding is driven by highly speci�c, microscopic physical–chemical inter-
actions versus the holistic view that would consider folding as a generic
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A�er the original Friedrichs andWolynes papers [20,75], a not elaborate but
still e�cient backbone model was introduced [21], having three beads per
residue, located at C↵, C� and O atomic positions. Furthermore, by lever-
aging the broad sti�ness spectrum of a protein chain, where bond lengths
and angle�uctuatemuch less compared to very dynamic dihedral angles, an
ideal peptide geometrical model had been pro�tably assumed, allowing on-
the-�y calculation of the positions of the remaining backbone atoms [21],

rNi
= 0.48318rC↵i*1

+ 0.70328rC↵i
* 0.18643rOi*1

rC®
i
= 0.44365rC↵i

+ 0.23520rC↵i+1
+ 0.32115rOi

rHi
= 0.84100rC↵i*1

+ 0.89296rC↵i
* 0.73389rOi*1

(4.13)

Here, i indexes the residue position along the chain. Hi refers to the amide
hydrogen. As elaborated below, the amide nitrogen and hydrogen positions
are used to construct directional hydrogen bond potentials.

Wewould like tomakeacleardistinctionbetween theall-atomrepresen-
tation of the backbone in the energy functions in theAWSEMpotential ver-
sus only three explicit beads that move duringmolecular dynamics. Hence,
interactions mediated by virtual beads are transmitted as corresponding
forces to the real beads using Equation 4.13 and the chain rule.

The backbone potential consists of a number of terms, developed over
many years, both systematically and by trial and error, that endow the poly-
mer chain with protein-like stereochemistry [31]:

Vbackbone = Vcon + Vchain + V� + Vrama + Vexcl (4.14)

Next, we brie�y discuss each of these terms. For additional informa-
tion, interested readers are advised to consult the AWSEMpublication [31],
in particular its Supplemental Information section, as well as some of the
earlier papers where these potentials had been introduced or extensively
discussed [12,21–23,25–27,76,77].

To maintain an ideal peptide geometry, one could constrain various
bonds and angles of the protein backbone. However, it is more e�cient to
use a carefully chosen set of harmonic distance constraints to achieve the
same e�ect. This, in particular, allows one to avoid the computational cost
fromusing three-body bending potentials and the computational burden of
trigonometric functions. Two sets of harmonic distance constraints, shown

Example of a backbone term, V𝜒, to maintain chirality 
of the peptide groups:

9781466576063_C004 page 144 2017/7/17

144 n Coarse-Grained Modeling of Biomolecules

Early AMH simulations, with only harmonic bonds connecting C↵s,
o�en exhibited frequent errors with inverted chirality at di�erent chain
scales. To address this problem, a chirality potential was introduced for all
amino acids except glycine, such that the natural le�-handedness of amino
acids is maintained during molecular dynamics. Let’s �rst de�ne, �

�i =
⇠

rC®i C↵i ù rC↵iNi

⇡

� rC↵i C�i , (4.17)

which is the scalar product of a vector normal to the C® *C↵ *N plane and
theC↵*C� vector. Then, the followingpotential prevents chirality inversion
of the C↵ atom:

V� = ��
N*1
…

i=2
(�i * �0)2. (4.18)

Prior studies have shown that preserving chirality at the residue level pre-
vents the chain from falling into unphysical traps with defective chiralities
along the chain, especially at smaller andmoderate spatial scales. However,
sometimes, low-energy chain conformations are still produced that are near
mirror images of the native topology, indicating that the local amino-acid
chirality does not completely determine the global chirality of the whole
chain.

The twomost salient dynamic degrees of freedom of a protein chain are
the� and dihedral anglesof each residue, determinedby the following sets
of four atoms, correspondingly,C®i*1*Ni*C↵i*C®i andNi*C↵i*C®i *Ni+1.
Structural analyses of experimentally determined protein conformations
show that the �, angles are strongly clustered around three or four cen-
ters in the so-called Ramachandran plot [33,46]. The major restriction on
the allowed values for�, angles originates from steric constraints. Biasing
theprotein chain conformations toward the allowedRamachandran regions
eliminatesa largenumberofunphysicalproteinchainconformations,hence,
reducing the unfolded state entropy:

Vrama = *�rama

N*1
…

i=2

…

j
Wje

*�j(!�j (cos(�i*�0j)*1)2+! j (cos( i* 0j)*1)2) (4.19)

Here, the {�0, 0} tuples point to locations on Ramachandran plot where
attractive wells are introduced to bias the corresponding dihedral angles.
The resulting default potential is shown in Figure 4.6a. The Ramachan-
dran potential (Equation 4.19) is not residue speci�c (except for proline,
Figure 4.6b, which has a unique backbone chemistry). However, sequence
speci�c biasing turns can be added toVrama if protein’s secondary structure
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Coarse-Grained Modeling with 
Physical Bioinformatics

Hypothesis: Hydrophilic Interactions are 
Specifically Mediated through Water 

Bioinformatics: Parameter 
Learning & Validation

Deriving Binding 
Potentials

Coupling of 
Binding & Folding

Extending Protein Folding 
Models into Binding

✏ G. A. Papoian and P. G. Wolynes, 
Biopolymes, 68, (2003), 333-349. 

Water in protein folding

✏ PNAS, 101, (2004), 3352-3357 
✏ JACS, 128, (2006), 5168-5178 
✏ JMB 367, (2007), 262-274  
✏ Methods, 52, (2010), 84–90

Folding Potentials Fail in 
Wet Interfaces 

✏ G. A. Papoian, J. Ulander and P. G. Wolynes, J. 
Am. Chem. Soc., 125, (2003), 9170-9178. 



Defining Contacts: 

Direct – d < 6.5 Å between C-β atoms. 

Water-Mediated – 7.8 Å < d < 9.5 Å 
between C-β atoms, with the constraint that 
both residues are at least partially water-
exposed.

Knowledge-Based Optimization of  
Direct and Water-Mediated  Binding Pair-Potentials

✏ Papoian, Ulander and Wolynes, J. Am. Chem. Soc., 125, (2003), 9170-9178.  
✏ Papoian, Ulander, Eastwood, Luthey-Schulten, and Wolynes, PNAS, 101, (2004), 3352-3357 
✏ Davtyan, Schafer, Zheng, Clementi, Wolynes, Papoian, J. Chem Phys B, 116, (2012), 1709–1715



Denatured 
Ensemble:


Large 
Structural 
Entropy

Energetic 
Ruggedness


Optimization: Using Energy Landscape Theory of Protein Folding

Natural Protein Random Sequence

Hi
gh
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em
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w
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re

J. N. Onuchic, P. G. Wolynes, Z. Luthey-
Schulten, N. D. Socci, PNAS, 92, (1995), 3626 

ΔE
δE

Below TF At TG

TF ⇡
ΔE
SC

TG⇡
δEp
SC

Principle of Minimal Frustration
TF > TG

Energy Gap
Ruggedness

Maximize Tf/Tg

Principle of Minimal 
Frustration





✏ Davtyan, Schafer, Zheng, Clementi, 
Wolynes, Papoian, J. Chem Phys B, 116, 
1709–1715

Figure 5: Structural alignments and comparative contact maps of the maximum Q score structures
obtained from “homologs excluded" predictions for 1R69 (on the left, Q = 0.74, RMSD 1.6Å )
and 3ICB (on the right, Q = 0.703, RMSD 2.4Å ).

non-homologous sequences on the quality of prediction is small. In fact, the improvement was

statistically significant for four proteins, of which only two had a change in the maximum Q value

of 0.1 or more. Specifically, the maximum Q values for 1CCR and 2FHA improved by 0.1 (from

0.33 to 0.43) and by 0.16 (from 0.319 to 0.474), respectively. The improvement for 2FHA can be

seen in the structural alignment and contact maps in Figure 6. Unlike the “homologs excluded"

prediction, wherein only 3 of the 5 helices are well formed, in the “homologs allowed" prediction

all helices are formed and 4 of them, with the exception of the small C-terminal helix, have the

correct mutual orientation and packing. This is particularly impressive given the size (172 residues)
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1R69 

(RMSD 1.6 Å)

3ICB 

(RMSD 2.4 Å)

High Resolution “Blind” Predictions for Some Proteins

Friedrichs & Wolynes,  Science 
1989, 246, 371 


Sasai, Wolynes, PRL 1990, 65, 
2740


Papoian, Ulander, Eastwood, 
Luthey-Schulten, Wolynes, 
PNAS, 2004, 101, 3352

Some Historical References  
(AMH & AMW)



4CPV 

(RMSD 1.3 Å)

Globally Homologous Proteins can be Used as 
Fragment Memories

Figure 7: Structural alignments and comparative contact maps of the maximum Q score structures
for 4CPV, with the “homologs excluded" prediction on the left (Q = 0.396, RMSD 5.8Å) and the
“homologs only" prediction on the right (Q = 0.784, RMSD 1.3Å).

MODELLER prediction is between 1 and 2 Å . This implies that, despite being a coarse-grained

model lacking explicit side chains, AWSEM can be used to make high resolution predictions for

sequences that have homologs with experimentally determined structures.

There are several possible contributing factors to AWSEM’s relatively poor prediction of 1MBA.

Of all the target sequences, 1MBA has the homologs with the lowest sequence identity, with a max-

imum of 32.64%. As a result, even though there are 26 homologs in the database with 95% MMSI,

the number of fragments assigned per position varied from 0 to 14 with an average value of 3.

This inhomogeneity cannot be overcome simply by scaling the strength of the fragment memory

term. In such cases it would be useful to introduce a smarter normalization and weighting scheme
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4CPV 

(RMSD 5.8 Å)

For larger proteins, the 
prediction is often 
relatively low resolution 
when no homologues are 
included as fragment 
memories


When even distant 
homologues are included, 
nearly atomic resolution 
predictions can be made


Hence, AWSEM-MD may 
be used instead of Gö-
models in many cases

✏ Davtyan, Schafer, Zheng, Clementi, 
Wolynes, Papoian, J. Chem Phys B, 116, 
1709–1715



AWSEM-MD: Binding of Homo- and Heterodimers

✏ Zheng, Schafer, Davtyan, Papoian, Wolynes, Proc Natl Acad Sci USA, (2012), 109, 19244-19429




Additional Developments
AWSEM-IDP


Added a new potential to better better control the radius of gyration of the 
protein chain; atomistic or experimental memories; fine-tuning of the AWSEM 
potential  
 

AAWSEM


Use atomistic simulations to generate fragment libraries, hence, removing the 
need to rely on a structural database 
 

AWSEM-ER


Added a biasing pairwise potential, which is determined from the correlations 
between co-evolution of sequence pairs. 

✏ Sirovetz, Schafer, Wolynes, Proteins, 2017, DOI: 10.1002/prot.25367

✏ Wu, Wolynes, Papoian, 2018, JPCB, DOI: 10.1021/acs.jpcb.8b05791

✏ Chen, Lin, Lu, Onuchic, Wolynes JPCB, 2017, 121, 3473



Intrinsically Disordered Proteins (IDPs): A Challenging Frontier

Type Method Advantage Limitation

Experimental
NMR Detailed local structure

Ensemble averaging

SAXS Overall shape and size

Computational
All-atom MD Precise structural & dynamic 

information
Accuracy issues

Major sampling issues

Coarse-grained MD Broad conformational exploration Major accuracy issues

✏ Papoian, Ulander, Eastwood, Luthey-Schulten, and Wolynes, PNAS, 101, (2004), 3352-3357 
✏ Davtyan, Schafer, Zheng, Clementi, Wolynes, Papoian, J. Chem Phys B, 116, (2012), 1709–1715



AWSEM-IDP

✏ Hao Wu et el

METHODS

AWSEM-IDP Hamiltonian

AWSEM-IDP is a specialization of AWSEM,37 a coarse-grained protein force field, where

each amino acid is represented by the positions of C↵, C� (H for glycine) and O atoms. The

coordinates of other heavy atoms are calculated following the ideal peptide geometry. The

total Hamiltonian of AWSEM-IDP, which largely coincides with AWSEM, is given below,

VtotalIDP = Vbackbone + Vcontact + Vburial + V 0
Hbond

+ V 0
FM

+ V 00
Rg
, (1)

where Vbackbone ensures a protein-like backbone connectivity and stereochemistry, Vcontact

and Vburial describe water- and protein-mediated tertiary interactions and also the preferences

for each amino acid to be buried or exposed. Detailed definitions of the first five terms are

provided in the reference.37 In this work, we report on fine-tuning the parameters for the

V 0
Hbond

and V 0
FM

terms for IDP simulations, hence denoting these terms with a single prime

notation. We also introduce here the V 00
Rg

term, which allows for fine control of collapse

and size fluctuations of the IDP chains. In the following subsections, these three terms are

introduced and further elaborated.

Hydrogen Bonding Potential

V 0
Hbond

is a sum of three hydrogen bonding terms, as shown in Eq. (2).

V 0
Hbond

= �0
�
V� + �0

P�AP
VP�AP + �0

helical
Vhelical (2)

where V� favors formation of well-structured hydrogen bonding networks in �-sheets,

VP�AP enables a protein chain to adopt approximate parallel or anti-parallel �-sheet con-

formations before more detailed hydrogen bonds are fully formed, and Vhelical controls the

formation of hydrogen bonds in ↵-helices, with �0
�
, �0

P�AP
and �0

helical
being the corresponding

5

weights of these potentials. Previous work37 has described these terms in detail.

IDPs normally show fewer secondary structure elements compared to globular proteins.

In our test simulations we found that with the default VHbond setup, IDPs tend to form

overly stable secondary structures. Therefore we kept the functional forms of these hydrogen

bonding terms but calibrated their relative weights, namely �0
�
, �0

P�AP
and �0

helical
, such that

the resulting ↵-helix and �-sheet propensities became more appropriate for IDPs and IDRs

(see Supporting Information S1 for detailed calibration procedures).

Fragment Memory Potential

AWSEM

Find homologous
structures from PDB

Target sequence Local segment Fragment memories

Locate local fragments

AWSEM-IDP

Find IDP ensembles 
from experiments or 

simulations

PDB database

NMR ensemble,
Atomistic simulation

Figure 1: Schematic diagram of the fragment memory in AWSEM and AWSEM-
IDP. In both AWSEM and AWSEM-IDP, the target sequence (green) is assigned into short
local segments (red). Then structural fragments called “memories” (blue) are chosen to bias
the local segment. Original AWSEM searches fragment memories from the PDB database,
while AWSEM-IDP utilizes NMR ensembles or atomistic simulation trajectories to construct
the fragment library. The example sequence shown here is the amino-terminal domain of
phage 434 repressor (PDB ID: 1R69).

V 0
FM

is a bioinformatic fragment memory (“FM”) potential that structurally biases short

fragments of the protein chain, typically 3 - 9 residues, towards conformations based on

“memory” structures, where the latter are selected by matching the fragment sequence to

6



✏ Hao Wu et al

PaaaA2A

B

i

ii
iii

Figure 5: AWSEM-IDP simulations agree well with experiments in the global
and local structures of PaaA2. (A) The free energy landscape of PaaA2 are projected
on the coordinates of Rg and De2e. The vertical and horizontal lines in the figure are the
average Rg and De2e from experimental ensemble. Representative structures are shown for
the experimental ensemble (green) and for di↵erent basins in AWSEM-IDP simulations (red).
(B) The two helical structures in both experimental ensemble (green) and �2D calculation
from NMR chemical shifts data (blue) are well replicated by AWSEM-IDP simulations (red),
with similar positions and probabilities.
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Green - experimental


Red - AWSEM-IDP


The key idea: Reproduce 
statistical distributions of 
important physical observables 
(order paramaters most 
pertinent to the IDPs)



IDP Modeling Powered by Experimental Data
IDP: PaaA2

Comparison with NMR

Comparison with SAX

Small force field errors can lead to large structural changes!



PaaaA2



Chaperone HJURP Stabilizes CENP-A/H4

✏ H. Zhao, D. Winogradoff, M. Bui, Y. Dalal, G. A. Papoian, JACS, (2016), 138, 13207

H4 histone serves as a reinforcing 
structural element within the histone core


Evolutionarily highly conserved


No histone variant


CENP-A/H4 dimer is significantly more 
dynamic than its canonical counterpart H3/
H4


HJURP stabilizes the CENP-A/H4 dimer by 
forming a specific electrostatic interaction 
network


Structural distributions obtained from 
AWSEM and explicit-solvent atomistic 
simulations were largely in agreement!



✏ B. Zhang, W. Zheng, G. A. Papoian, and P. G. Wolynes, JACS, (2016), v 138, pp 
8126–8133

Exploring the Free Energy Landscape of Nucleosomes 
Using AWSEM-MD



H3/H4 Tetramer Swivels Around the Central Interface

CENP-A/H4 H3/H4

✏ H. Zhao, D. Winogradoff, Y. Dalal, G. A. Papoian, Biophysical J, (2019), in press



Simulations of H1-Nucleosome 
Complex by AWSEM-3SPN2.c

color code: histone core/nucleosomal DNA/H1/dyad DNA/linker 
DNA1/linker DNA2  

• A hybrid force field AWSEM-IDP:3SPN2 to model H1 globular domain, disordered 
tails and DNA. 

• Studied three systems: “noH1”, “GH1”, “fullH1” to highlight the functions of different 
H1 domains. 

• 50 independent 60ns (~3µs in total) MD simulations for each system.



✏ Melters, D, Pitman, 
M , Rakshit, Bui, M, 
Dimitriadis, E, Papoian, 
G.A., Dalal, Y, PNAS, 
2019, 116 (48) 24066
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CENP-C Rigidifies CENP-A in vitro

In vitro work: Tatini Rakshit 
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✏ Melters, D, Pitman, M , Rakshit, Bui, M, Dimitriadis, E, 
Papoian, G.A., Dalal, Y, PNAS, 2019, 116 (48) 24066



Acknowledgments

James Komianos

Carlos Floyd

NSF CHEMISTRY: CTMC  
NSF PHYSICS: POLS

Qin NiAravind Chandrasekaran

Arpita UpadhyayaHaoran Ni Radek Erban



Acknowledgments

Dr. Davit Potoyan  
(Iowa State)

Dr. Chris Materese (NASA)David Winogradoff (UIUC)

Haiqing Zhao (Columbia 
University)

Mary Pitman (UMD) Hao Wu (UMD)




