Magnetic reconnection and particle acceleration in space and astrophysical systems

J. F. Drake University of Maryland

Ack: Drs. M. Swisdak, J. Dahlin, H. Arnold, and the SolFER team

Magnetic Energy Dissipation in the Universe

- Magnetic reconnection is the dominant mechanism for dissipating magnetic energy in the universe
- The conversion of magnetic energy to heat and high speed flows underlies many important phenomena in nature
- Known systems are characterized by a slow buildup of magnetic energy and fast release
 - Poorly understood
- A significant fraction of the released magnetic energy goes into energetic particles
 - Emerging understanding

Astrophysical reconnection

Solar and stellar flares

• Pulsar magnetospheres, winds, PWNe

• AGN (e.g., blazar) jets, radio-lobes

Gamma-Ray Bursts (GRBs)

Magnetosphere

Mechanisms for particle acceleration

Fast mode shocks

$$\frac{d\varepsilon}{dt} \sim \frac{\Delta V}{L} \varepsilon$$

• Magnetic reconnection

$$\frac{d\varepsilon}{dt} \sim \frac{c_A}{L} \varepsilon$$

- Turbulence
 - Can gain or lose energy
 - See more waves head-on so net gain

$$\frac{d\varepsilon}{dt} \sim \frac{c_A^2}{Lv} \varepsilon$$

Cosmic Ray Energy Spectrum

- Supernova shocks remain the favored mechanism for producing cosmic rays
 - Fermi reflection across the shock front
 - Converging flow at shock
 - Energies up to $\sim 10^{15} eV$
 - Too small to contain higher energy particles
 - Powerlaw spectra close to observations
 - $\sim E^{-2.7}$
- Jets from active Galactic nuclei and associated radio lobes are large enough to produce particles above 10¹⁵eV
 - Open issue
- GZK cutoff at around 10²⁰eV
 - Pion production due to scattering off the microwave background

Magnetic Free Energy

• A reversed magnetic field is a source of free energy

- •Can imagine **B** simply self-annihilating
- •What happens in a plasma?

Energy Release from a Squashed Bubble

- Evaluate initial and final magnetic energies
 - use conservation law for ideal motion
 - magnetic flux conserved
 - area for nearly incompressible motion

$$W_f \sim (w/L) W_i \ll W_i$$

Most of the magnetic energy is released

Flow Generation

Released magnetic energy is converted into plasma flow

$$\frac{1}{2}\rho v^2 = \frac{B^2}{8\pi}$$

$$v \approx c_A \equiv (\frac{B^2}{4\pi\rho})^{1/2}$$
 $\tau_A = L/c_A$

•Alfven time τ_A is much shorter than observed energy release time

Magnetic Reconnection Basics

- Reconnection is driven by the magnetic tension in newly reconnected field lines
 - Drives outflow at the Alfven speed c_A
 - Pressure drop around the x-line pulls in upstream plasma
- Dissipation required to break field lines
 - At small spatial scales since dissipation is weak
- Reconnection is self-driven
 - No external forcing is required
- This picture is unaffected by an ambient magnetic field in the out-of-plane direction the guide field
 - The guide field strongly impacts particle acceleration

Transition to fast reconnection

Reconnection inflow velocities around 0.1C_A

Cassak et al 2005

Impulsive flare timescales

- Hard x-ray and radio fluxes
 - 2002 July 23 X-class flare
 - Onset of 10's of seconds
 - Duration of 100's of seconds.

RHESSI and NoRH Data (White et al., 2003)

Cartoon of solar flare reconnection

• Classic picture of reconnection during flare energy release

Observation of large solar flare

- September 10, 2017 X-class flare
- A limb flare
 - On the edge of the sun viewed from Earth
- Extreme ultra violet (EUV) imaging
- Consistent with classic flare cartoon

Reconnection driven particle acceleration

RHESSI spacecraft observations

- July 23 γ-ray flare (Holman, et al., 2003)
- Double power-law fit with spectral indices:
 - 1.5 (34-126 keV)
 - 2.5 (126-300 keV)

Fermi solar flare observations

• June 12, 2010, γ-ray flare (Ackermann+ 2012)

RHESSI occulted flare observations

- Direct observations of coronal x-ray sources are rare
 - Emission from energetic electrons striking the corona blinds the weaker source high in the corona where the plasma density is low
- Observations of a December 31, 2007, occulted flare
 - A large fraction of electrons in the flaring region are part of the energetic component (10keV to several MeV)
 - The pressure of the energetic electrons approaches that of the magnetic field

Gamma-Ray Flares in the Crab

September 2010 AGILE/FERMI γ-flare

Observational constraints:

- Flare duration: $\tau = 1 \text{ day}$ --> $l \sim 3 \times 10^{15} \text{ cm}$
- Photon energy: > 100 MeV --> Particle energy ~ PeV
- Isotropic flare energy: $\sim 4 \times 10^{40} \text{ erg}$
- Reconnection mechanism? Shocks are too slow.

Energy release during reconnection

- The change in magnetic topology for reconnection takes place in the "diffusion" region
 - A very localized region around the x-line
 - This is not where significant magnetic energy is released

- Energy release primarily takes place downstream of the xline where newly-reconnected field lines relax their tension
- Mechanisms for particle heating and energization can not be localized in the "diffusion region"

Basic mechanisms for particle energy gain during reconnection

• In the guiding center limit

$$\frac{d\varepsilon}{dt} = qv_{\parallel}E_{\parallel} + q\vec{v}_{c} \bullet \vec{E} + \mu \frac{\partial B}{\partial t} + q\vec{v}_{B} \bullet \vec{E}$$

- Curvature drift
 - Slingshot term (Fermi reflection) increases the parallel energy

$$v_c = \frac{v_{\parallel}^2}{\Omega} \vec{b} \times (\vec{b} \cdot \vec{\nabla} \vec{b})$$

$$c_A$$

$$v_0$$

$$c_A$$

- Grad B drift
 - Betatron acceleration increases perpendicular energy μ conservation

$$v_B = \frac{v_\perp^2}{2\Omega} \vec{b} \times \frac{\nabla B}{B} \qquad \mu = \frac{mv_\perp^2}{2B}$$

Particle-in-cell (PIC) simulation: basics

• The algorithm

- Throw a bunch of particles on a grid
 - Electrons and protons or electrons and positrons
- Advance the particle motion in electric and magnetic fields
- Calculate the currents from the particles
- Advance E and B using Maxwell's equations

• The constraints

- The model must resolve all kinetic scales
- The Debye length of order 0.1cm for coronal parameter

$$\lambda_{De} = \frac{v_{te}}{\omega_{pe}}$$

- Characteristic flare sizes around 10⁴ km
- PIC models can only explore very small domains
 - Scale lengths of meters

Electron heating during reconnection

- Carry out 2-D PIC simulations of electron-proton system with a weak and strong guide fields (0.2 and 1.0 times the reconnection field)
 - 819.2d_i x 409.6d_i with d_i the ion inertial length
 - Compare all of the heating mechanisms $d_i = \frac{c}{c}$
 - Dahlin et al '14

Electron heating mechanisms: weak guide field

- Slingshot term dominates (Fermi reflection)
- Parallel electric field term small a surprise
- Grad B term is an energy sink
 - Electrons entering the exhaust where B is low lose energy because μ is conserved.

Electron Fermi acceleration

• How do the most energetic electrons gain energy?

Schoeffler et al 2011

Acceleration mechanism for highest energy electrons

• Fermi reflection dominates energy gain for highest energy electrons

$$\frac{d\varepsilon}{dt} \sim qv_{\parallel}E_{\parallel} + q\vec{v}_{c} \cdot \vec{E}$$
 - Where $v_{c} \sim v_{\parallel}^{2}$

• Recent simulations of pair and relativistic reconnection also see the dominance of Fermi reflection (Guo+ '14, Alfves+ '18)

Magnetic energy per particle

- The available magnetic energy per particle is a key parameter in both non-relativistic and relativistic reconnection
 - Non-relativistic: $W_0 = B^2/4\pi n = m_i C_A^2$
 - Around 20keV for flares
 - Relativistic: $\sigma = B^2/4\pi nmc^2$
 - Can be large in many astrophysical systems
- The available magnetic energy per particle is not sufficient to explain the most energetic particles in flares

Particle acceleration in multi-island reconnection

- Single x-line reconnection can not explain the most energetic particles seen in flares
 - Energy gain limited to around 10keV in solar flares

• Greater energy gain in contracting and merging magnetic

islands Tajima and Shibata '97 Drake et al '06 Oka et al '10 Dahlin et al '15 3D 2D

Energy gain during the merging of islands

- Total area preserved during merger
- Magnetic flux is preserved
- Merging islands shorten field lines
- Parallel action is conserved $p_{\parallel}L$
 - L goes down during merger so p_{\parallel} goes up
- The merger of two equal sized islands doubles the parallel energy of particles within the islands
- Time scale of island merging

$$t_{merge} \sim \frac{r}{0.1c_{A}}$$

Rate of particle energy gain

$$rac{dW}{dt} \sim rac{W}{t_{merge}}$$

Drake et al '13 Montag et al '17

MeV electrons in a coronal hard x-ray source

- How to get MeV electrons in the corona?
 - A two-step process heating in single x-line reconnection following by island merging
- First step: single x-line reconnection splits released energy between electrons, ions and bulk flow
 - $-T_e \sim 0.25 m_i C_A^2$
 - For B ~ 50 G, with n $\sim 10^9$ cm⁻³, obtain T_{hot} ~ 10 keV
- Second step: island mergers
 - Each merger doubles the electron energy field line shortening
 - How many island mergers takes 10keV electrons to 1MeV?

$$15keV \times 2^N = 1MeV \Rightarrow N = 6$$

- Take typical island of size $W \sim 10^3 km$
- Two island merging time $t_{merge} \sim (W/2)/0.1c_A \sim 1.5s$
- 1MeV electrons in $t_{1MeV} \sim 6t_{merge} = 9s$

Powerlaw spectra from 3D PIC reconnection simulations: non-relativistic

- Simulations of reconnection and particle acceleration
 - Turbulent reconnection in 3D systems
 - Powerlaw limited to around a decade in energy
 - PIC models are not producing the extended powerlaws seen in observations
 - Why?

Powerlaw spectra from 3D PIC reconnection simulations: non-relativistic

- PIC simulations of astrophysical jets (Alfves+ 2018)
 - $-\sigma = 5$
 - Limited range of the powerlaw because of limited PIC domain

Modeling particle acceleration in macrosystems: the *kglobal* model

- PIC models have insufficient separation between kinetic and the system size
 - The scale size of structure that develop are at spatial scales that are too
 - Small structures scatter particles when the particle gyroradius reaches the size of the structure
 - Rate of energy gain strongly reduced once particles are demagnetized
- The *kglobal* simulation model eliminates these deficiencies
 - Eliminates kinetic scale boundary layers
 - Includes electron particles on a grid as in the PIC model
 - Includes the feedback of energetic particles on the plasma dynamics
- Can now simulate particle acceleration in macro-systems

Drake+ '19, Arnold+ 19, Arnold+ '21

kglobal reconnection results

- Time development of reconnection with electron acceleration in a macro-system
 - Simulation domain $\sim 10^4$ km

Electron Energy

Firehose parameter

Current

Electron energy spectra

- Electron powerlaw spectra from *kglobal*
 - Powerlaws extend nearly three decades in energy
 - Strong dependence on the ambient out-of-plane magnetic field
 - Suppresses field line contraction

Comparison with a large limb solar flare

- An X-class limb flare occurred on Sept. 10, 2017
 - Gyro-synchrotron emission from the Expanded Owens Valley Solar Array
 - Space/time evolution of energetic electron spectral indices and coronal magnetic field
 - X-ray data from RHESSI
 - Comparison of spectral indices
 - RHESSI 3.9
 - Kglobal 3.5
 - No free parameters

Main Points

- Solar observations suggest that magnetic energy conversion into energetic electrons is extraordinarily efficient
- Acceleration of energetic particles dominated by Fermi reflection in both relativistic and non-relativistic reconnecting systems
- Multi-x-line reconnection is required to produce the energetic component of the particle spectrum
 - PIC simulations have not been able to produce the extended power tails of energetic electrons seen in observations
 - Small simulation domains distort the dynamics of particle energy gain
 - kglobal simulations produce extended powerlaw tails
 - Powerlaw indices sensitive to the ambient guide field
- An analytic model based on magnetic island merger reproduces the key results of the *kglobal* simulations
- An upgrade is planned to include particle ions in the model