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Thanks to My Probability Professors at Courant: Raghu Varadhan
and Monroe Donsker
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In Memoriam: Nikolai Simonov, 1956–2019

Figure: Died in an avalanche in the Altai Mountains, May 6, 2019
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Monte Carlo Methods for PDEs

A Little History on Monte Carlo Methods for PDEs

Early History of MCMs for PDEs

1. Courant, Friedrichs, and Lewy: Their pivotal 1928 paper has probabilistic
interpretations and MC algorithms for linear elliptic and parabolic problems

2. Fermi/Ulam/von Neumann: Atomic bomb calculations were done using Monte Carlo
methods for neutron transport, their success inspired much post-War work especially
in nuclear reactor design

3. Kac and Donsker: Used large deviation calculations to estimate eigenvalues of a
linear Schrödinger equation

4. Forsythe and Leibler: Derived a MCM for solving special linear systems related to
discrete elliptic PDE problems
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Stochastic Methods to Solve Electrostatics Problems

Sampling Elliptic PDEs via Brownian motion

The First Passage (FP) Probability is the Green’s Function

The canonical elliptic boundary value problem for electrostatics (one of Maxwell’s
equations):

1
2
∆u(x) = 0, x ∈ Ω

u(x) = f (x), x ∈ ∂Ω

▶ Distribution of z is uniform on the sphere
▶ u(x) has mean-value property and harmonic
▶ Also, u(x) satisfies the boundary condition

u(x) = Ex [f (X x(t∂Ω))] (1)
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Stochastic Methods to Solve Electrostatics Problems

First Passage Probability is the Green’s Function

The First Passage (FP) Probability is the Green’s Function

Reinterpreting as an average of the boundary values

u(x) =
∫
∂Ω

p(x , y) f (y)dy (2)

Another representation in terms of an integral over the boundary

u(x) =
∫
∂Ω

∂g(x , y)
∂n

f (y)dy (3)

g(x , y) – Green’s function of the Dirichlet problem in Ω

=⇒ p(x , y) =
∂g(x , y)

∂n
(4)
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Stochastic Methods to Solve Electrostatics Problems

Walk on Spheres

‘Walk on Spheres’ (WOS) and ‘Green’s Function First Passage’
(GFFP) Algorithms

▶ Green’s function is known
=⇒ direct simulation of exit points and computation of the solution through averaging
boundary values

▶ Green’s function is unknown
=⇒ simulation of exit points from standard subdomains of Ω, e.g. spheres
=⇒ Markov chain of ‘Walk on Spheres’ (or GFFP algorithm) x0 = x , x1, . . . , xN
xi → ∂Ω and hits ε-shell is N = O(| ln(ε)|) steps
xN simulates exit point from Ω with O(ε) accuracy
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Stochastic Methods to Solve Electrostatics Problems

Walk on Spheres

The First Passage (FP) Probability is the Green’s Function



Stochastic Computational Electrostatics and Applications: Computing Capacitance

Stochastic Methods to Solve Electrostatics Problems

Important Computational Paradigm: Computing Capacitance

Computing Permeability via Capacitance

▶ Hubbard and Douglas from NIST showed that the permeability of a porous medium is
functionally related to the capacitance of a nonskew conductor

▶ Capacitance and permeability are proportionality constants
1. Capacitance is the ratio of charge to voltage
2. Permeability is the ratio of pressure gradient to flux

▶ Capacitance and permeability are completely determined by geometry
▶ The mathematical problems surrounding both are elliptic

1. For capacitance it is the Laplace (a Maxwell) equation
2. For permeability it is the Stokes equation for creeping flow
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Stochastic Methods to Solve Electrostatics Problems

Computing Capacitance

Computing Capacitance
▶ Recall that C = Q

u , if we hold the conductor, Ω, at unit potential u = 1, then C = total
charge the conductor’s surface, ∂Ω

▶ The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞ (5)

▶ If we know the charge density, q on the conductor, Ω, then the total charge is just∫
∂Ω

q(s)ds

▶ Knowing u(x) gives us q(x) = − 1
4π

∂u
∂n

▶ Solving for capacitance requires computing the following for the solution to the above
Laplace equation

Q = − 1
4π

∫
∂Ω

∂u(s)
∂n(s)

ds (6)
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Stochastic Methods to Solve Electrostatics Problems

Computing Capacitance

Computing Capacitance Deterministically

▶ The problem we are solving for capacitance the exterior problem, and so one must
discretize based on the method of choice

1. Boundary Element Method (BEM): Must discretize ∂Ω
2. Finite Element Method (FEM) or Finite Difference Method (FDM): Must discretize R3 \ Ω

▶ Solve the exterior Laplace equation (5) for u
▶ Differentiate u on ∂Ω

▶ Integrate to compute the total charge using equation (6)
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Stochastic Methods to Solve Electrostatics Problems

Computing Capacitance

Computing Capacitance Probabilistically

▶ The PDE system for the potential is

∆u = 0, x /∈ Ω; u = 1, x ∈ ∂Ω; u → 0 as |x | → ∞

▶ Recall u(x) = Ex [f (X x(t∂Ω))] = 1, if the walker hits ∂Ω, or 0, if the walker → ∞ =
probability of walker starting at x hitting Ω before escaping to infinity

▶ Charge density is first passage measure on the exterior of Ω
▶ Construct a sphere, S(R), such that Ω ⊂ S(R)

▶ Capacitance is C = R × P(t∂Ω < ∞) = R ×
∫
∂S(R)

u(x)ds, where the starting point of
the walk is chosen uniformly on the ∂S(R)

▶ Note, this definition is independent of R
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Stochastic Methods to Solve Electrostatics Problems

Computing Capacitance

Porous Media: Complicated Interfaces
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Stochastic Methods to Solve Electrostatics Problems

Capacitance as a Computational Paradigm

Capacitance as a Computational Paradigm

▶ We have found that the running time of these codes hinged on the efficiency of
geometrical computations

▶ The probabilistic capacitance computation is key in
1. Permeability computation via Hubbard-Douglas
2. Many other electrostatics computations in areas of chemistry, computer science, physics,

and materials science, including our own PBE computations
3. In the ZENO code written for materials property computations at NIST

▶ We took the NIST ZENO code and analyzed it to determine areas for improvement
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Stochastic Methods to Solve Electrostatics Problems

Capacitance as a Computational Paradigm

What is the Computational Geometric Problem?

▶ ZENO is named for the paradox, and getting close the boundary for producing
approximate first-passage locations is done with the ZENO algorithm, which is WOS
by another name

▶ The usual geometry in these problems is additive
▶ As mentioned above the primitive computation geometrically is given a query point,

find the closest point to the boundary, and that is used as the radius to construct the
WOS radius

▶ The usual ZENO problem is the so-called exterior problem, which is what is done in
permeability: computing the probability of first-passage from ∞ using relative
capacitance of a bounding sphere
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Stochastic Methods to Solve Electrostatics Problems

Capacitance as a Computational Paradigm

Gridding vs. Hierarchical Decomposition

mesh w/ FastTetWild
1 hour 25 minutes

build BVH for WoS
< 1 second

input
(Thingi10k #996816)

Figure: Gridding for FEM vs. Bounded Volume Hierarchy (BVH) for WOS Geometric Query
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Stochastic Methods to Solve Electrostatics Problems

Capacitance as a Computational Paradigm

Mathematical Model: Molecular Geometry

Figure: Biomolecule with dielectric ϵi and region region Gi is in solution with dielectric ϵe and region
Ge. On the boundary of the biomolecule, electrostatic potential and normal component of dielectric
displacement continue
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Biochemical Problems

Mathematical Model: Partial Differential Equations
▶ Poisson equation for the electrostatic potential, Φi , and point charges, Qm, inside a

molecule (in CGS units):

ϵi∆Φi(x) + 4π
M∑

m=1

Qmδ(x − x (m)) = 0 , x ∈ Gi

▶ For 1-1 salt (such as NaCl) Poisson-Boltzmann equation (PBE):

∆Φe(x)− κ2 sinh(Φe(x)) = 0 , x ∈ Ge ,

but we only consider the linearized PBE:

∆Φe(x)− κ2Φe(x) = 0 , x ∈ Ge

▶ For one-surface model: continuity condition on the dielectric boundary

Φi = Φe , ϵi
∂Φi

∂n(y)
= ϵe

∂Φe

∂n(y)
, y ∈ Γ
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Biochemical Problems

Mathematical Model: Debye-Hückle Parameter

Dependence on salt in the Debye-Hückle parameter (units as per Kirkwood):

κ2 =
8πNAe2Cs

ϵe1000kBT
, where

▶ Cs – concentration of ions (in moles)
▶ NA – Avogadro’s number
▶ e – elementary protonic charge
▶ kB – Boltzmann’s constant
▶ ϵe – dielectric permittivity outside the molecule
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Biochemical Problems

Electrostatic Potential and Energy

Electrostatic Potential and Energy

▶ Point values of the potential: Φ(x) = Φrf (x) + Φc(x)
Here, singular part of Φ:

Φc(x) =
M∑

m=1

Qm

|x − x (m)|

▶ Reaction field electrostatic free energy of a molecule is linear combination of point
values of the regular part of the electrostatic potential:

Wrf =
1
2

M∑
m=1

Φrf (x (m))Qm ,

▶ Electrostatic solvation free energy = difference between the energy for a molecule in
solvent with a given salt concentration and the energy for the same molecule in
vacuum:

∆Gelec
solv = Wrf (ϵi , ϵe, κ)− Wrf (ϵi ,1,0)
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Biochemical Problems

Electrostatic Potential and Energy

‘Walk-on-Spheres’ Algorithm

▶ Walk-on-spheres (WOS) algorithm for general domains with a regular boundary
▶ Define a Markov chain {xi , i = 1,2, . . .}
▶ Set x0 = x (m) for some m, xi = xi−1 + diωi , i = 1,2, . . ., where

1. di = d(xi−1) is distance from xi−1 to Γ
2. {ωi} is sequence of independent unit isotropic vectors
3. xi is the exit point from the ball, B(xi−1, d(xi−1)), for a Brownian motion starting at xi−1

▶ Outside the molecule, on every step, walk-on-spheres terminates with probability

1 − q(κ,di), where q(κ,di) =
κdi

sinh(κdi)
to deal with LPBE
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Biochemical Problems

Walk-in-Subdomains

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’
▶ For general domains, an efficient way to simulate exit points is a combination of

1. Inside the molecule: ‘walk-in-subdomains’
2. Outside the molecule ‘walk-on-spheres’

▶ The whole domain, Gi , is represented as a union of intersecting subdomains:

Gi =
M⋃

m=1

Gm

▶ ‘Walk-in-Subdomains’: Simulate exit point separately in every Gm

1. x0 = x , x1, . . . , xN – Markov chain, every xi+1 is an exit point from the corresponding
subdomain for Brownian motion starting at xi

2. For spherical subdomains, B(xm
i ,Rm

i ), exit points are distributed in accordance with the
Poisson kernel:

1
4πRm

i

|xi − xm
i |2 − (Rm

i )2

|xi − xi+1|3
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Biochemical Problems

Walk-in-Subdomains

‘Walk-on-Spheres’ and ‘Walk-in-Subdomains’

Figure: Walk in subdomains example



Stochastic Computational Electrostatics and Applications: Computing Capacitance

Biochemical Problems

Monte Carlo Estimates

Monte Carlo Estimates

▶ The estimate for the reaction-field potential point value:
ξ[Φrf ](x (m)) = −Φc(x∗

1 )

+

Nins∑
j=2

Fj(κ) (Φ
c(x ins

j )− Φc(x∗
j,ins)) (7)

▶ Here {x∗
j,ins} is a sequence of boundary points, after which the random walker moves

inside the domain, Gi , to x ins
j

▶ The estimate for the reaction-field energy:

ξ[Wrf ] =
1
2

M∑
m=1

Qm ξ[Φrf ](x (m)) (8)
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Biochemical Problems

Monte Carlo Estimates

Computational Results: 3 Truncated Arginine-Rich Peptides

Figure: PDB IDs: 1a4t, 1hji, 1qfq
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Biochemical Problems

Monte Carlo Estimates

Accuracy: Monte Carlo vs. Deterministic

Figure: PDB IDs: 1a4t, 1hji, 1qfq
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Conclusions

Conclusions

▶ Monte Carlo can be an efficient method for the numerical solution of PDEs as
evidenced by

1. Financial computing
2. Numerous problems in electrostatics: mutual capacitance in EDA, biochemical

electrostatics
3. Numerous problems in computational materials: permeability, ZENO

▶ The computation of capacitance is a good model problem for computational
investigation, capacitance is an important functional of geometry

1. Computational geometry is the bottleneck that can be overcome with proper choice of
data-structure/algorithm

2. Allows for almost perfect parallelization, across cores and multicore nodes
▶ C++ version of ZENO uses SPRNG
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Conclusions

Future Work

▶ Continue work on biochemical electrostatics
▶ We expect to be able to improve all the codes we have developed

1. Current C++ version of the WOS-PBE code:
https://zeno.nist.gov

▶ We want to have a WOS-based implementation of the capacitance code using CUDA
on NVidia GPUs

1. WOS is being used by computer graphics folks
2. The geometric query in WOS is a generalization of the GPU-based geometry query in ray

tracing
▶ Compare WOS capacitance extraction to:

1. Deterministic methods (FEM, FDM, BEM)
2. Machine learning methods
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Conclusions

A Book Of Interest?
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Conclusions
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