A Note from the Chair

Dear GMAG members,

As current Chair of the Topical Group on Magnetism and its Applications (GMAG), I would like to take this opportunity to thank you for belonging to GMAG, to convey a few items of information, and to ask for your participation in several GMAG activities, particularly the organization of the next March meeting Symposia and invited talks.

This newsletter contains complete information on the five Focused Session Topics we will be sponsoring for the March '04 APS meeting, including information on how to suggest speakers and contribute abstracts. We also here are soliciting suggestions for the 3 invited Symposia we are allowed to sponsor. We include again information on our new student awards and membership support for those who might have missed the previous announcement in our Spring newsletter, and remind you all of the procedures for nominating worthy people from the magnetism community for a prize or Fellowship. Additionally, information is provided below about nomination procedures for the next GMAG election.

STUDENT AWARDS AND STUDENT MEMBERSHIP SUPPORT: In an effort to encourage more students to participate in GMAG events, GMAG has decided to implement (on a trial basis) two new policies:

1) Free student membership in GMAG: Students who are members of APS can join GMAG without paying additional dues (GMAG will pay student GMAG dues to the APS). Interested students should email a note to Jonathan Sun (jonsun@watson.ibm.com) with their name, APS membership#, mailing address, and email address (note that students can join the APS free for one trial year and $26 for each succeeding year).
2) Outstanding Dissertation in Magnetism awards: GMAG will award up to three awards at the next March Meeting. These awards will recognize students who have conducted outstanding research related to Magnetism leading to their dissertation and will consist of an invited talk in an appropriate session at the March APS Meeting and a $500 prize to the student (not intended as a travel award, but as a prize to the student). The student must be in their final year before being awarded a Ph.D., and both the student and the advisor must be current members of GMAG. Nominations will consist of a nominating letter by the student's advisor and an extended abstract of the research. The nominating letter must address the following:

- the quality and independence of the student's work;
- their speaking ability;
- the year they began graduate school;
- their expected completion date (by Sept. 1, 2004, for 2003 nominations);
- assessment of their future potential as a research scientist.

(Please note that students should still submit their abstracts via the usual APS March Meeting website by the APS deadline of Dec. 5, in addition to the extended nomination abstract discussed above.)

Nominations should be sent by email to Frances Hellman (fhellman@ucsd.edu) no later than Nov. 1, 2003. Evaluation of the nominations will be conducted by the GMAG Executive Committee. Winners will be notified by Nov. 27 and will be expected to submit an abstract for their invited talk through normal APS channels before the Dec. 5 deadline.

NOMINATIONS FOR THE NEXT GMAG ELECTION: We need nominations of good candidates for GMAG Vice Chair (who becomes Chair-Elect and then Chair), Secretary-Treasurer, and 2 new Members-at-Large. Julie Borchers (julie.borchers@nist.gov) is Chair of the Nominations Committee. Please email suggestions to her no later than Sept. 1.

NOMINATIONS FOR APS FELLOWSHIPS AND PRIZES/AWARDS: GMAG is allowed to nominate 2-3 people for APS Fellowship each year ((0.5%) of our membership). The nomination deadline for the upcoming year is April 2, 2004 (information can be found at http://www.aps.org/fellowship/). You might want to start preparing a nomination for next year for a young (or not so young!) person you think should be awarded APS Fellowship. The nomination deadline for most of the APS prizes and awards for this year has passed (July 1, 2003) but it is not too early to begin thinking of worthy people from the magnetism community for next year (awards and prizes are listed on the APS web site http://www.aps.org/praw/).

GMAG MEMBERSHIP AND OTHER ACTIVITIES: As always, we encourage you to get involved with GMAG, and to encourage colleagues who may not be members to join. We are always looking for GMAG members who are interested in helping to expand GMAG activities. We are also specifically looking for someone interested in working on updating/expanding the GMAG web site (http://www.aps.org/units/gmag/index.html) to make it an exciting and useful site to visit.

—Frances Hellman
GMAG Officers

Chair
Frances Hellman fhellman@ucsd.edu

Members at Large of the Executive Committee
(Term ends March 200x)
Barbara Jones (2004) bajones@almaden.ibm.com
Julie Borchers (2005) julie.borchers@nist.gov

Chair-Elect
Peter Schiffer schiffer@phys.psu.edu

Jonathan Sun (2005) jonsun@us.ibm.edu
Laura Lewis (2006) lhlewis@bnl.gov
Mark Stiles (2006) mark.stiles@nist.gov

Vice-Chair
Jack Bass bass@pa.msu.edu

Secretary-Treasurer
R Bruce van Dover rbvd@mailaps.org

Past Chair
David Sellmyer dsellmyer1@unl.edu
Jeff Lynn jeff.lynn@nist.gov
Si Foner sfoner@mit.edu
Lawrence Bennett lbennett@seas.gwu.edu
Carl Patton patton@lamar.colostate.edu
David Jiles gauss@ameslab.gov

Standing Committees:
Nominating Committee (appointed by GMAG Chair):
Julie Borchers julie.borchers@nist.gov

Fellowship Committee:
(GMAG Bylaws specify that the GMAG Vice-Chair be the Chair of the Fellowship Committee)
(The recent amendment to the Bylaws specifies that the Executive Committee Members also serve on the Fellowship Committee)
Jack Bass bass@pa.msu.edu
Executive Committee

Program Committee (by formal convention Chair-Elect serves as Chair of the Program Committee):
Peter Schiffer schiffer@phys.psu.edu

Recruiting Committee:
Jonathan Sun, IBM
MARCH MEETING 2004

NOMINATIONS FOR SYMPOSIA AND FOCUSED SESSION TOPICS
An important function of GMAG is to plan and organize sessions on topics associated with magnetism at the March APS Meeting (sorting category 6). This is done by sponsoring Focused Sessions Topics, by organizing Invited Symposia, and by carrying out the sorting of contributed abstracts for Category 6.

For the March 2004 Meeting, GMAG is co-sponsoring the following five Focused Session Topics:

6.11.1 Theory and Simulation of Magnetism and Spin-Dependent Properties
6.11.2 Magnetic Nanostructures and Heterostructures
6.11.3 Magnetoresistance and Phase Complexity in Oxides
6.11.4 Spin Transport and Spin Dynamics in Metal-Based Systems
6.11.5 Spin-Dependent Phenomena in Semiconductors

Full descriptions, organizers and contact information for each topic are listed below. The Focused Session Topics are arranged into individual sessions which typically have one invited speaker and up to 12 contributed talks. Suggestions for invited speakers for each of these topics are encouraged and should be made to the organizers through the on-line form at http://positron.aps.org/wcgi/dmp_invited.pl. (We are taking advantage of the nomination system created by the DMP). The deadline for suggesting invited speakers to the focus topic organizers is August 29, 2003.

Contributed talks for the Focused Session Topics need to be submitted directly to the APS at http://abstracts.aps.org/ according to their procedures. Please use the sorting categories listed above if your contributed talk fits into one of Focused Session Topics. Note that the deadline for submitting a contributed talk abstract for a Focused Session Topics or for any sorting category for the March Meeting is December 5, 2003.

In addition to these Focused Session Topics, GMAG is allocated three Invited Symposium slots to organize for the Meeting. We often arrange to co-sponsor one of these Symposia with another Division of the APS, which allows us to increase this number. This year’s GMAG Program Chair, also the Chair-Elect of GMAG, is Peter Schiffer. Please contact Peter at schiffer@phys.psu.edu no later than August 29, 2003, with suggestions for Invited Symposia.

FOCUS TOPICS

6.11.1 Theory and Simulation of Magnetism and Spin Dependent Properties

The purpose of this Focus Topic is to explore recent advances in theory and modeling of magnetic and spin-dependent properties of materials. The topic will include methods and materials systems as well as magnetic and spin-dependent properties. Of particular
concern are magnetic materials in reduced dimension where surface and interface effects become increasing dominant and influence the spin structure, spin dynamics and spin transport. Thus it is expected that a significant part of this Focus Topic will be devoted to theoretical and computational issues in connection with magnetic nanosystems such as 2D-multilayers, 1D-wires, 0D-particles, molecules, and impurities; these include metals, alloys, magnetic semi-conductors, magnetic oxides and magnetic molecules in various environments (isolated structures as well as embedded in the bulk and on surfaces). Properties include magnetic structure, mechanisms of exchange coupling, anisotropy, spin-dynamics, damping mechanisms, domain structure, hysteretic phenomena, phase transitions, magneto-optics, spin-transport, spin injection and quantum tunneling. Methods include first principles density functional theory-based methods (LDA, etc) as well as new developments for strongly correlated systems (such as LDA plus dynamical mean field theory), spin models, Monte Carlo and spin dynamics methods, and micromagnetic modeling. Of particular interest are methods for multiscale modeling that bridge length scales and approaches to extend the time scale of simulations.

Organizers:

Warren E. Pickett
Department of Physics
University of California Davis
Davis CA 95616, USA
Phone: (530) 752-0926
Fax: (530) 752-4717
Email: pickett@physics.ucdavis.edu

David P. Landau
Department of Physics and Astronomy
The University of Georgia
Athens GA 30602-2451
Phone: 706-542-2908
Fax: 706-542-2485
Email: dlandau@hal.physast.uga.edu

Mark van Schilfgaarde
Department of Mechanical and Aerospace Engineering
Arizona State University
Tempe AZ 85287-6106
Phone: 480-965-4977
Fax: 480-965-1384
Email: Mark.Vanschilfgaarde@asu.edu

6.11.2 Magnetic Nanostructures and Heterostructures

The magnetic properties of nanometer-scale structures can differ significantly from bulk properties, giving rise to interesting and technologically-important behavior. This Focus Topic will cover magnetic structures such as thin films, multilayers, nanocomposites, nanowires, nanoparticles, nanoparticle arrays, and patterned films. All aspects of these structures are of interest, including theory, fabrication, characterization, measurement, and modeling. Areas of interest include low-dimensional magnetism, proximity effects, interlayer magnetic coupling, exchange spring, exchange bias, magnetic quantum confinement, magnetic anisotropy, effects of structural disorder, hysteresis, coercivity
enhancement, and other magnetic phenomena. Of special interest are the fabrication of nanostructures with atomic-scale control, synthesis and assembly of nanoparticles and arrays, high-resolution characterization methods with site and/or element specificity, novel techniques for the creation of nanoscale magnetic features, and unusual physical phenomena present in these systems.

Organizers:

Mark Stiles
National Institute of Standards and Technology
100 Bureau Dr. Stop 8412
Gaithersburg, MD 20899-8412
Phone: (301) 975-3745
Fax: (301) 926-2746
Email: mark.stiles@nist.gov

Ziqiang Qiu
Dept. of Physics
University of California at Berkeley
Berkeley, CA 94720
Phone (510) 642-2959
Email: qiu@socrates.berkeley.edu

6.11.3 Magnetoresistance and Phase Complexity in Oxides

The complex nature of transition-metal oxides such as manganites, cobaltites, and ruthenates, creates a variety of interesting physical phenomena including colossal magnetoresistance (CMR), half-metallicity, ferro- and antiferromagnetic ordering, charge- and orbital-ordering, as well as phase separation and percolative properties both at the nano- and mesoscopic scales. This Focused Topic will address experimental, computational, and theoretical investigations in this context, both of fundamental and applied nature. Among the main goals is to understand the relation between magnetic and electronic properties with other physical phenomena such as magneto-transport, lattice, elastic and magnetic excitations, surface behavior, and electron correlation effects. The similarities between the many compounds will be emphasized. Analogies with materials that also present nanoscale inhomogeneities, such as the high-Tc cuprates, will be addressed.

Organizers:

Elbio R Dagotto
Dept of Physics
Florida State University
Keen Bldg
Tallahassee, FL 32306
Phone (850) 644-1726
Fax (850) 644-5038
Email dagotto@magnet.fsu.edu

Despina A Louca
Physics Department
University of Virginia
382 McCormick Rd PO Box 400714
Charlottesville, VA 22904
Phone (804) 924-6802
Fax (804) 924-4576
Email louca@virginia.edu
6.11.4 Spin Transport and Spin Dynamics in Metal-Based Systems (GMAG/DMP)

This Focus Topic concerns experimental and theoretical investigations that elucidate and/or utilize the transport and transfer of spin, at the nanoscale, in metal-based magnetic systems. Studies that emphasize spin phenomena in semiconductor systems will be covered in a separate focused topic. Topics of interest include all aspects of spin-dependent transport and scattering, in the diffusive, ballistic, tunneling and hot electron transport regimes as evidenced, for example, in giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), ballistic magnetoresistance, tunneling spectroscopy of spin states, spin filtering and related effects. Also of particular interest are studies of the transfer of spin between charge carriers and magnetic elements resulting in either the excitation or damping of the magnetic element, and the use of magnetoresistance and spin-transfer phenomena to investigate nanomagnetic behavior and dynamics. Additional topics include, but are not limited to, interfacial spin transport, spin injection and spin lifetime studies in ferromagnetic - normal metal and ferromagnetic- superconductor systems, as well as the use of such systems to study spin polarization.

Organizers:

Gang Xiao
Dept of Physics
Brown University
Box 1843
Providence, RI 02912
Phone (401) 863-2586
Fax (401) 863-2024
Email xiao@physics.brown.edu

Peter M Levy
Dept of Physics
NYU
4 Washington Place
New York, NY 10003
Phone (212) 998-7737
Fax (212) 995-4016
Email levy@nyu.edu

6.11.5 Spin-Dependent Phenomena in Semiconductors

The field of spin-dependent phenomena in semiconductors has developed rapidly in the past several years. Considerable progress has been realized in electrical injection,
transport, manipulation and detection of spin-polarized carriers in semiconductor heterostructures. Optical and high-speed electrical manipulation of electron spin coherence, and polarization/imprinting of the nuclear spin system in GaAs by an adjacent ferromagnet has been explored and demonstrated. The understanding and control of ferromagnetic order in semiconductor hosts such as the III-Mn-V alloys has significantly improved, and offers great potential for new device functionality. A number of new semiconducting materials which exhibit ferromagnetism at relatively high temperatures (in some cases in excess of 300 K) have been reported, although many of these materials remain to be fully characterized and the origin of their ferromagnetism clarified. In addition, room-temperature magnetoelectronic devices such as magnetic tunnel junctions and magnetic tunneling transistors continue to develop rapidly. For example, giant magnetocurrents (>3400%) with large output currents have recently been reported for GaAs magnetic tunneling transistors. This Focus Topic solicits abstracts in each of these areas. Abstracts of particular interest include: magnetic semiconductors: fabrication, characterization and theory, clarification of the origin of high temperature ferromagnetism in semiconducting hosts; manipulation of electron and nuclear spin in quantum structures; electrical spin injection into semiconductors from magnetic metals and semiconductors; magnetoelectronic devices including spin-LEDs, spin transport/manipulation in heterostructures such as spin-FETs, magnetic tunnel junctions involving semiconducting barriers or functional integration with semiconductors, magnetic tunneling transistors.

Organizers:

Berend T. Jonker
Research Physicist, Code 6340
Materials Physics Branch
Naval Research Laboratory
4555 Overlook Ave SW
Washington, D.C. 20375-5343
Phone: (202) 404-8015
Fax: (202) 404-4071 or 767-1697
Email: jonker@nrl.navy.mil

Roland Kawakami
Dept of Phys
Univ of California -Riverside
Riverside, CA 92521
Phone (909) 787-5343
Fax (909) 787-4529
Email roland.kawakami@ucr.edu

Lu J Sham
Dept of Phys 0319
Univ of California-San Diego
9500 Gilman Dr
La Jolla, CA 92093-0319
Phone (858) 534-3269
Fax (858) 534-2232
Fellows

We congratulate our most recent Fellows (class of 2002), sponsored by GMAG for their outstanding contributions to the field of magnetism.

Julie Ann Borchers
National Institute of Standards and Technology
For her insightful neutron investigations into interlayer exchange interaction phenomena in magnetic thin films and superlattices.

Karl. A. Gschneidner, Jr
Iowa State University
For contributions to the scientific understanding and applications of rare earth elements, their alloys and compounds.

Vincent G. Harris
Naval Research Laboratory, Washington
For contributions to magnetism in revealing the role of atomic structure in local magnetic phenomena, including the discovery of the structural origins of magnetic anisotropy in rare earth-based amorphous alloys.