A Message from the Chair

With the 2016 March meeting less than a month away, I want to take this opportunity to tell you a bit about the DMP program and to alert you to upcoming important deadlines where you, the DMP Membership, play a key role in keeping DMP a leading, vibrant, unifying element of the APS.

This Newsletter itself is your first guide to the wide variety of DMP sessions and activities to be found in Baltimore. DMP leads 19 Focus Topics comprising 115 sessions that capture the breadth of materials physics, with science ranging from iron-based superconductors to 2D materials, and from halide perovskites to metamaterials. As part of the scientific program, we will recognize the recipients of the McGroddy Prize for New Materials, Mercouri Kanatzidis, and the Adler Lectureship awardee, Harry Atwater. Our current Vice Chair, Dan Dessau, has assembled an outstanding lineup of speakers for the annual ‘Physics for Everyone’ Symposium on Wednesday, including Rush Holt, current AAAS Chief Executive, Millie Dresselhaus reminiscing on her career in nanoscience, Alan Wilner on the optics revolution underlying the internet, Duncan Watts from Microsoft Research on computational social science, and Gene Stanley telling us about one of the most important and complicated materials – water.

We will recognize our award winners and the 16 new APS Fellows nominated through DMP on Tuesday evening, March 15, from 5:30-7:00 in the Hilton Baltimore Key Ballroom 4. This event also showcases DMP’s commitment to promote early career scientists through the Ovshinsky Travel Awardees, the IUPAP C-10 Young Scientist Prize, and the second Richard L. Greene Dissertation Award in Condensed Matter and Materials Physics. I hope you will be able to join us on Tuesday evening to celebrate these outstanding DMP colleagues. The annual DMP Business meeting follows immediately in the Hilton Holiday Ballroom 1.

As you have been notified already, now is the time to propose new Focus Topics next year’s March Meeting by contacting Dan Dessau, who will be the DMP Program Chair for the 2017 March Meeting, March 13 – 17 in New Orleans, LA. The DMP focus topics provide an
opportunity to gather related talks in distinct and well-defined focus sessions on topics of intense interest; they also provide the opportunity to mix invited and contributed talks in the same forum. Your colleagues will appreciate and benefit from your suggestions, so please send your best ideas to Dan (Dessau@colorado.edu) following the instructions found later in this Newsletter. Later in the spring, the complete list of focus topics will be announced. Please consider suggesting invited speakers to the organizers; your input is critical to the success of these core DMP contributions to the program.

DMP sponsors two major recognitions: the David Adler Lectureship Award in the Field of Materials Physics, and the James C. McGroddy Prize for New Materials. Please consider who among your colleagues might be deserving of one of these high visibility, prestigious awards and put together an application package. The deadline for 2017 nomination packages is July 1, 2016. See http://www.aps.org/programs/honors/ for details of the nomination processes.

New APS Fellowship nominations are also on the horizon, with DMP requesting the nomination packages by May 2, 2016. You can find information on how to nominate your colleagues at http://www.aps.org/programs/honors/fellowships. Amanda Petford-Long, who will join the DMP officers as Vice-Chair immediately following the March Meeting will chair the selection process and looks forward to your suggestions.

Finally, I would like to take this opportunity to thank the DMP Executive committee, and in particular Michael Flatté and Secretary-Treasurer Robert Nemanich, for their tireless efforts and commitment to improving DMP and APS more broadly. If you liked the virtual board at the Sorter’s Meeting, you have Michael to thank. Also, a word of appreciation to Laura Greene, immediate Past-Chair, whose DMP Executive Committee service is wrapping up. I would like to thank her for her sage advice and leadership; please join me in wishing Laura the best as she moves up the APS Presidential Line. It has been a pleasure serving with all of them as we have set out to represent you, the diverse, energetic, and thoughtful membership not only through the meeting program but also through ongoing engagement with APS leadership. DMP is a thriving, vital, unifying part of APS, and it has been an honor serving as your Chair for the past year.

See you in Baltimore!

John Mitchell, DMP Chair

Call for DMP Focus Session Topics for 2017 APS March Meeting

The Division of Materials Physics sponsors a wide range of Focus Topics as its primary structure for the March Meeting. Typically spanning several sessions throughout the March Meeting, Focus Topics allow an in-depth view of forefront materials physics research areas and connect invited speakers to associated contributed abstracts.

Each year, the existing set of Focus Topics is evaluated for inclusion in the next year's program. In addition, new candidates for Focus Topics are considered based on timeliness, an assessment of the community interest, and uniqueness with the existing DMP program and those of sister units. Ideas coming from the DMP community at large are an extremely important part of this process.

To that end, the DMP Executive Committee solicits your input for the 2017 Focus Topic slate. New Focus Topics should represent a significant topic that would support 3 or more March Meeting sessions (each session typically has 1 invited talk and 12 related contributed talks).
Please send proposed Focus Topics to DMP Secretary/Treasurer Robert Nemanich (robert.nemanich@asu.edu) by Friday, March 4, 2016. Please include
- Descriptive Title of the Focus Topic
- The nominator’s name, affiliation, phone number and e-mail address
- A brief abstract noting timeliness and uniqueness of the topic relative to the existing program (for examples: http://www.aps.org/units/dmp/invited-speaker.cfm).
- A description of the intended audience that supports the size and scope of a Focus Topic.
- Suggestions for possible organizers.

Any additional information you would like to provide that will help the DMP Executive Committee in its decision-making process will be appreciated. For your reference, a complete list of the 2016 Focus Topics is included in this mailing. Full descriptions of the 2016 Focus Topics can be found online at http://www.aps.org/units/dmp/invited-speaker.cfm.

If you have any questions or would like assistance in the preparation of your proposal, please contact DMP Chair John Mitchell (mitchell@anl.gov).

Thank you in advance for your help in this extremely important part of planning for the future success of the DMP program.

Sincerely,
Dan Dessau, DMP Vice-Chair and 2017 Program Chair
Michael Flatté, DMP Chair-Elect and 2016 Program Chair

DMP led Focus Topics for 2016 (More details at http://www.aps.org/units/dmp/invited-speaker.cfm)

7.1.1: Dielectric and Ferroic Oxides
7.1.2: Topological Materials: Synthesis and Characterization
7.1.4: Strongly spin-orbit coupled oxides/emergent entwinement
7.1.5: Organometal Halide Perovskites; Photovoltaics and beyond
8.1.2: Dopants and Defects in Semiconductors
9.1.1: Fe-based Superconductors
12.1.1: 2D materials: synthesis, defects, structure and properties
12.1.2: 2D materials: semiconductors
12.1.3: Devices from 2D materials: function, fabrication and characterization
12.1.4: 2D materials: metals, superconductors, and correlated materials
12.1.5: Carbon Nanotubes and Related Materials: Synthesis, Properties, and Applications
12.1.6: Van der Waals Bonding in Advanced Materials
12.1.7: Computational Discovery and Design of New Materials
13.1.1: Nanostructures and Metamaterials
13.1.2: Many-body perturbation theory for electronic excitations in materials
13.1.3: Electron, Ion, and Exciton Transport in Nanostructures
13.1.4: Complex Oxide Interfaces and Heterostructures
13.1.5: Thermoelectric Phenomena, Materials, Devices, and Applications
13.1.6: Mesoscopic Materials and Devices
New Members of the Executive Committee

The following members were elected to serve on the DMP Executive Committee:
 Vice Chair: Amanda K. Petford-Long, Argonne National Laboratory
 Member at Large: Scott Chambers, Pacific Northwest National Laboratory
 Member at Large: Michelle Johannes, Naval Research Laboratory

We congratulate the new members of the Executive Committee and look forward to their participation and leadership.

March Meeting: Location

The 2016 March Meeting of the APS will take place, March 12-18, 2016 in the Baltimore Convention Center, Baltimore, Maryland. All scientific sessions will be in the Convention Center but events and activities may be in the Convention Center or the Baltimore Hilton Inner Harbor hotel. Check event details for time and place.

For further information see:
http://www.aps.org/meetings/march/index.cfm

For the DMP sponsored sessions see:
http://meetings.aps.org/Meeting/MAR16/SessionIndex2?SponsorID=DMP

March Sponsored Meetings: DMP/DCMP Fellows and Awards Reception and Business Meeting

The Division of Materials Physics will sponsor the following meetings during the 2016 March meeting. This is your opportunity to interact with the Executive Committee and to become informed of the activities of the Division.

Tuesday, March 15
DCMP/DMP New Fellows & Award Winners Reception
 5:30 p.m. - 7:00 p.m.
 Hilton Baltimore Key Ballroom 4

DMP Business Meeting, (JA50)
 7:00-8:00pm
 Baltimore Hilton Inner Harbor - Holiday Ballroom 1

Division of Materials Physics Ovshinsky Student Travel Awards

The Ovshinsky Student Travel Awards and Honorable Mention Awards have been established to assist the career of student researchers. The Awards are in memory of Iris and Stanford Ovshinsky who had a very strong interest and commitment to scientific education. The awards have been endowed by the Ovshinsky family, their colleagues at Energy Conversion Devices (ECD) companies and all their numerous friends from many social, intellectual and business relationships.
We are extremely grateful to the Ovshinsky family for this award. Since the original launch of the award, the family have provided further gifts to endow the awards.

The Ovshinsky Student Travel Awards will be presented at the DCMP/DMP New Fellows and Award Winners Reception, Tuesday, March 15, 5:30 p.m. in Hilton Baltimore Key Ballroom 4

The recipients of the 2016 Ovshinsky Student Travel Awards for Materials Physics are:

<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lars Bjaalie</td>
<td>University of California Santa Barbara</td>
</tr>
<tr>
<td>Guillaume Froehlicher</td>
<td>IPCMS (CNRS & Université de Strasbourg),</td>
</tr>
<tr>
<td>Charlotte Herbig</td>
<td>University of Cologne</td>
</tr>
<tr>
<td>Liang Hong</td>
<td>University of Illinois at Chicago</td>
</tr>
<tr>
<td>Tianyi Liu</td>
<td>University of Pennsylvania</td>
</tr>
<tr>
<td>Arun Mannodi-Kanakkithodi</td>
<td>University of Connecticut</td>
</tr>
<tr>
<td>Minh-Hai Nguyen</td>
<td>Cornell University</td>
</tr>
<tr>
<td>Michael Veit</td>
<td>Stanford University</td>
</tr>
<tr>
<td>Joshua Young</td>
<td>Drexel University</td>
</tr>
<tr>
<td>Xiao-Xiao Zhang</td>
<td>Columbia University</td>
</tr>
</tbody>
</table>

The recipients of the 2016 Ovshinsky Student Travel Honorable Mention Awards for Materials Physics are:

<table>
<thead>
<tr>
<th>NAME</th>
<th>INSTITUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohammad Atif Faiz Afzal</td>
<td>University at Buffalo, SUNY</td>
</tr>
<tr>
<td>Jihong Al-Ghalith</td>
<td>University of Minnesota, Twin Cities</td>
</tr>
<tr>
<td>Anushika Athauda</td>
<td>University of Virginia</td>
</tr>
<tr>
<td>Wei Jiang</td>
<td>University of Utah</td>
</tr>
<tr>
<td>Ryan Need</td>
<td>University of California Santa Barbara</td>
</tr>
<tr>
<td>Sobhit Singh</td>
<td>Department of Physics and Astronomy</td>
</tr>
<tr>
<td>Sai Swaroop Sunku</td>
<td>Columbia University</td>
</tr>
<tr>
<td>Renan Villarreal</td>
<td>University of Geneva</td>
</tr>
<tr>
<td>Wennie Wang</td>
<td>University of California, Santa Barbara</td>
</tr>
<tr>
<td>Melanie White</td>
<td>University of Las Vegas - Nevada</td>
</tr>
<tr>
<td>Yichao Xu</td>
<td>University of California, San Diego</td>
</tr>
</tbody>
</table>

Award and Prize Winners

James C. McGroddy Prize for New Materials

Mercouri G. Kanatzidis, Northwestern University

“For seminal contributions to the discovery of new families of thermoelectric materials with the highest known figure of merit.”
David Adler Lectureship Award
Harry A. Atwater, California Institute of Technology
“For pioneering work in photonics, plasmonics, optical metamaterials, and photovoltaics, and for his outstanding presentations and outreach to the general audience.”

IUPAP Young Scientist Prize in the Structure and Dynamics of Condensed Matter (C10)
Wenzhong Bao, Department of Microelectronics, Fudan University, China
“For his outstanding contribution in electrical and mechanical properties of the low-dimensional quantum materials.”

Richard L. Greene Dissertation Award in Experimental Condensed Matter or Materials Physics
Susanne Baumann, IBM Almaden Res Ctr
“For outstanding work in measuring and controlling the spin properties of individual magnetic atoms on surfaces by high-resolution scanning tunneling microscopy.”

Alexander Steppke, University of St Andrews
“For thermodynamic study of quantum criticality in Yb(Rh_{0.93}Co_{0.27})_2 and YbNi_4(P_{1-x}As_x)_{2}.”

2015 APS Fellows nominated through DMP:
Eric Bauer (Los Alamos National Laboratory)
For outstanding and original contributions to the discovery and understanding of correlated electron systems, specifically for the study of complex electronic states hosted by correlated actinide and rare-earth materials.

Scott Chambers (Pacific Northwest National Laboratory)
For pioneering contributions in the growth and properties of crystalline oxide films, particularly the fundamental relationships between composition and structure, and the resulting electronic, magnetic, and photochemical properties.

Craig Fennie (Cornell University)
For the invention of novel mechanisms enabling dielectric, ferroelectric, and multiferroic functionalities in complex oxides, and identification of materials realizations through first principles methods.

Jaime Fernandez-Baca (Oak Ridge National Laboratory)
For seminal neutron scattering studies of magnetic materials, especially the spin and lattice dynamics of colossal magnetoresistive manganites.

Sergei Kalinin (Oak Ridge National Laboratory)
For foundational contribution to nanoscale electromechanics and revolutionary studies of defect-mediated phase transitions, energy conversion, and electrochemical reactivity at the nanometer and atomic scales enabled by advanced scanning probe microscopy techniques.
Ron Lifshitz (Tel Aviv University)
For the theory of nonlinear dynamics and relaxation of vibrational modes in nanomechanical systems and for groundbreaking results on the symmetry stabilization, and photonic and magnetic properties of quasicrystals.

Junming Liu (Nanjing University)
For seminal contributions to the synthesis and characterization of multiferroic materials and other complex transition metal oxides, and to the understanding of physics of rare-earth manganites with multiferroicity and colossal magnetoresistance.

Michael Manfra (Purdue University)
For advancing MBE growth of AlGaAs/GaAs and AlGaN/GaN heterostructures that enable fundamental understanding of 2D electron correlation effects and realization of novel devices.

Carlos Meriles (City College of New York)
For creative contributions to the development of novel techniques in magnetic resonance, including ex-situ MRI scanning, spin hyperpolarization and optical detection.

Ning Pan (University of California, Davis)
For significant contributions to the scientific research of mechanics and physics in the field of fibrous materials.

John Pendry (Imperial College London)
For the discovery of metamaterials.

Antoni Planes (Universitat de Barcelona)
For outstanding and original contributions to the study of fundamental aspects of phase transition dynamics in functional materials.

Ramamurthy Ramprasad (University of Connecticut)
For pioneering contributions to the computation-driven rational design of materials, especially polymeric and inorganic dielectric materials and catalysts.

Tanusri Saha-Dasgupta (S.N. Bose National Centre for Basic Sciences)
For development of fast and accurate electronic structure methods allowing the combined study of material-specific and many-body aspects, and their application in understanding the transition-metal oxides and quantum spin systems.

Liling Sun (Institute of Physics, Chinese Academy of Sciences, Beijing)
For outstanding contributions in the study of iron-based superconductors and other quantum correlated materials, and in the development of state-of-the-art systems for in-situ high pressure measurements.

Yang Yang (University of California, Los Angeles)
For extraordinary contributions in organic and hybrid electronic materials, interfacial engineering, and novel device design that have led to highly efficient organic and hybrid solar cells, digital memory devices, vertical transistors, and organic LEDs.
March Meeting: DMP Sponsored Symposia & Special Events

DMP Invited Symposia

C13. DMP Prize Session (Harry Atwater, Adler Award; Dirk van der Marel, Isakson Prize; D.B. Tanner, Isakson Prize; Alexander Steppke, Greene Dissertation Prize; Susanne Baumann, Greene Dissertation Prize)

L4. Physics for Everyone (Mildred Dresselhaus; Alan Willner; Duncan Watts; H. E. Stanley; Duncan Watts)

S3. Towards Design of Correlated Electron Materials (Warren E. Pickett; Lucas Wagner: Chuck-Hou Yee; Emilia Morosan; Hua He)

H2: Graduate Student Lunch with the Experts
Sponsoring Units: APS units at the meeting, Room: TBA, Tuesday, March 3, 12:30 - 2:00PM
Students may sign up (in registration area) on site to enjoy a complimentary box-lunch while participating in an informal discussion with an expert on a topic of interest to them.

DMP Supported Tables include:
“Sharing experiences as a woman in physics,” Amanda Petford-Long, Argonne National Laboratory,
“Spintronics in dissimilar materials,” Chris Palmstrom, UC Santa Barbara
“Quantum engineered materials,” Nitin Samarth, Pennsylvania State University
“Should you choose: tenure or family?” Emilia Morosan, Rice University
“2D materials for optoelectronics and spin-valley physics,” Bernhard Urbaszek, CNRS Toulouse, France

DCMP/DMP New Fellows & Award Winners Reception
Room: Hilton Baltimore Key Ballroom 4, Tuesday, March 3, 5:30 p.m. - 7:00 p.m
DMP: McGroddy Prize, Adler Award, Greene Dissertation Awards, DMP Nominated APS Fellows, Ovshinsky Student Travel Awards
DCMP: Buckley Prize, Onsager Prize, Lilienfeld Prize, Davisson-Germer Prize, Isakson Prize, DCMP Nominated APS Fellows

DMP Business Meeting
JA50. DMP Business Meeting

DMP Focus Topic Sessions:

Dielectric and Ferroic oxides
A30. Ferroelectric Heterostructures
C30. Novel Ferroic Systems
H30. Novel Behavior at Oxide Interfaces
K30. Complexity in Ferroic Systems
R30. Properties of Multiferroic Materials
S30. Theory of Ferroic Systems

Topological Materials: Synthesis, Characterization and Modeling
A28. Topological Phases
Strongly spin-orbit coupled oxides/emergent entwinement
A26. Experimental Advances in Strongly Spin-orbit Coupled Oxides
L33. Kitaev Physics in Honeycomb Iridates

Organometal Halide Perovskites; Photovoltaics and beyond
R8. Hybrid Organic Inorganic Perovskite Photovoltaics
S8. Electrical Transport and Photoexcitations in Organic/Inorganic Perovskites
X8. Organic Inorganic Perovskite Spintronics

Dopants and Defects in Semiconductors
E51. Dopants and Defects in Semiconductors: Theory
H7. Dopants and Defects in Semiconductors: Spin Related Transport
K7. Dopants and Defects in Semiconductors: Nitrides
L7. Dopants and Defects in Semiconductors: Novel experimental techniques
P7. Dopants and Defects in Semiconductors: Oxides
V7. Dopants and Defects in Semiconductors: Silicon and Germanium
X7. Dopants and Defects in Semiconductors: Compound Semiconductors

Fe-based Superconductors
A11. Pairing Interaction and Gap Symmetry in Fe-based Superconductors
B11. Superconductivity in Monolayer FeSe/SrTiO3
E11. Electronic Structure and Magnetism in Fe-based Superconductors I
F11. Nematicity in Fe-based Superconductors
H11. Correlations and Superconductivity in Fe Chalcogenides I
K11. Electronic Structure and Magnetism in Fe-based Superconductors II
L11. Novel Physics of Fe-Pnictide Superconductors
P11. Correlations and Superconductivity in Fe chalcogenides II
R5. Disorder and Substitution Studies in Fe-based Superconductors
S5. New Fe-based Superconductors and Related Materials I
X11. New Fe-based Superconductors and Related Materials II
Y20. Correlations and Superconductivity in Fe-chalcogenides III

2D materials: synthesis, defects, structure and properties
A17. Graphene: Growth and Synthesis
B17. Graphene: Synthesis, Properties, and Defects
E16. Graphene and Graphene Nanoribbons
H17. Transition Metal Dichalcogenides: Defects and Degradation
P15. 2D Materials: Preparation and Characterization
S26. 2D Materials Beyond Graphene
X14. Transition Metal Dichalcogenides: Growth and Synthesis

2D materials: semiconductors

F16. Exciton Dynamics in 2D Semiconductors
L16. Black Phosphorus Device Physics
R17. 2D Semiconductor Physics I
S17. 2D Semiconductor Physics II
X17. 2D Semiconductor Physics III
Y16. Silicene, Germanene, and Beyond
Y17. 2D Semiconductor Physics IV

Devices from 2D materials: function, fabrication and characterization

A16. 2D Devices: Sensors and Detectors
B16. 2D Devices: Plasmonics and Optoelectronics
C26. 2D Devices: Low-dimensional Properties and Contacts
E15. 2D Devices: Mobility and Energy Relaxation
F17. 2D Devices: Superconductors, Charge Density Waves, Phase Transitions
H16. 2D Devices: Electronics and Optoelectronics
K16. 2D Devices: Black Phosphorous
L17. 2D Devices: Charge, Spin, and Valley Control
P16. 2D Devices: Black Phosphorous, III-IV, and IV-VI Materials
S16. 2D Devices: Mechanical metamaterials
V17. 2D Devices: Spin Transport, Spin Orbit Coupling

2D materials: metals, superconductors, and correlated materials

R15. 2D Materials: Superconductivity and Correlations I
S13. 2D Materials: Semimetals
S15. 2D Materials: Superconductivity and Correlations II
V15. 2D Materials: Charge Density Waves
X15. Unconventional Two Dimensional Materials.
Y15. 2D Materials: Superconductivity and Correlations III

Carbon Nanotubes and Related Materials

A27. Carbon Nanotube & Related Materials: Growth, Separation, and Assembly
F27. Carbon Nanotube & Related Materials: Optical & Other Properties
K27. Carbon Nanotubes: Electronic, Transport & Sensing
S27. Carbon Nanotube & Related Materials: Thermal, Mechanical & other Properties

Van der Waals bonding in advanced materials

X20. Van der Waals Bonding in Advanced Materials: Carbon Allotropes and Boron Nitride
Y22. Van der Waals Bonding in Advanced Materials: Methods

Computational Discovery and Design of Novel Materials

B23. Computational Materials Discovery and Design - Electronic Structure
H23. Computational Materials Discovery and Design - Materials for Catalysis
K23. Computational Materials Discovery and Design - Structure Prediction and Phase Diagrams
L23. Computational Materials Discovery and Design - Graphene and 2D Materials
P23. Computational Materials Discovery and Design - Defects and Interfaces

Nanostructures and Metamaterials
A23. Novel Plasmonic Effects and Devices
C23. Acoustic, Thermal, and Photonic Metamaterial Concepts
E23. Metamaterial Devices and Applications
F23. Synthesis, Fabrication and Characterization of Nanostructures

Many-body perturbation theory for electronic excitations in materials

Electron, ion, exciton transport in nanostructures
A24. Electronic Transport through Individual Nanostructures
B24. Optical Effects Near Metallic Nanostructures
C24. Time-resolved Energy Transfer and Exciton Transport in Nanostructures
F24. Electronic and Optical Properties of Nanoparticle Assemblies
V24. Electron Transport at Nanoscale Interfaces

Complex Oxide Interfaces and Heterostructures
B30. Ferroelectric Walls, Heterostructures and Superlattices
E30. Topological and Correlation Effects in Oxide Heterostructures
F30. Orbital and Electronic Transitions in Oxide Heterostructures
L30. Functional Defects in Oxide Heterostructures
P30. Advances in Complex Oxide Film Growth
V30. Charge Transfer and Electron Gases at Oxide Interfaces
X30. Structural and Functional Imaging of Oxide Interfaces
Y30. Ionically Controlled Transport and Electrooptical Functionalities at Oxide Interfaces

Thermoelectric phenomena, materials, devices
L35. Thermoelectrics Low Dimensional Materials
P32. Quantum Thermoelectric Systems
R23. Thermoelectrics-Nanostructures
S23. Thermoelectrics Theory I
V11. Thermoelectrics: McGroddy Prize and Novel Materials
X23. Thermoelectrics Theory II
Y23. Thermoelectrics, Low Dimensional Materials

Mesoscopic Materials and Devices (DMP)
L24. Mesoscopic Materials and Devices I
S24. Mesoscopic Materials and Devices II
March Meeting: Pre-meeting Workshops

2016 Physics Teacher Education Coalition Conference
March 11 - 13, 2016 in Baltimore, Maryland at the Royal Sonesta Harbor Court - Baltimore

U.S.-Brazil Young Physicists Forum for Early Career Physicists
Saturday, March 12 - Sunday, March 13, 2016, TBD

DPOLY Short Course on “Polymer Nanocomposites: Challenges and Opportunities”
Structure, Dynamics, and Processing of Polymer Nanocomposites
Saturday, March 12 - Sunday, March 13, 2016, TBD

Professional Skills Development Workshop - Women Postdocs and Early Career Women Physicists
March 13, 8:00 am- 6:30 pm, TBD

Integrating Computation into the Undergraduate Physics Curriculum
March 13, 1:00 pm- 5:30 pm, TBD

Periscope: Looking Into Learning in Best Practices in University Physics Classrooms
March 13, 4:00 pm- 6:00 pm, TBD

National Mentoring Community (NMC) Get-together
March 13, 5:00 pm- 6:00 pm, TBD

First-Time Attendee Orientation
March 13, 6:00 pm- 7:00 pm, TBD

March Meeting: Tutorials
Sunday, March 13

Morning Tutorials, Convention Center, 8:30 a.m. - 12:30 p.m.

Tutorial #1: Density Functional Theory
Instructors: Neepa Maitra, Hunter College & Graduate Center of the City University of New York, John Perdew, Temple University, Carsten Ullrich, University of Missouri-Columbia, Adam Wasserman, Purdue University

Tutorial #2: Probing Photovoltaic Devices with State-of-the-Art Imaging Tools
Instructors: Mariama Bertoni, Arizona State University, Knut Deppert, Lund University, Sweden, Marina Leite, University of Maryland, College Park, Susanna Thon, John Hopkins University

Tutorial #3: Quantum Spintronics
Instructors: David D. Awschalom, University of Chicago, Christoph Boehme, University of Utah, Michael E. Flatté, University of Iowa, Evelyn Hu, Harvard University

Tutorial #4: X-ray Scattering in Condensed Matter Physics
Instructors: Aaron Lindenberg, Stanford University, Karl Ludvig, Boston University, Mark Dean, Brookhaven National Laboratory, Stephen Kevan, Lawrence Berkeley Laboratory/University of Oregon,
Tutorial #5: Colloids and Granular Materials
Instructors: Karen Daniels, North Carolina State University, Scott Franklin, Rochester Institute of Technology, Eric Weeks, Emory University, Roseanna Zia, Cornell University

Afternoon Tutorials, Convention Center, 1:30 p.m. - 5:30 p.m.

Tutorial #6: Quantum Characterization, Verification, & Validation (QCVV)
Instructors: Joseph Emerson, University of Waterloo / IQC, Steven Flammia, University of Sydney, Jay Gambetta, IBM, Kenneth Rudinger, Sandia National Labs, Erik Nielsen, Sandia National Labs

Tutorial #7: Characterization of materials through many body theory from ABINIT
Instructors: Fabien Bruneval, CEA Saclay, France, Gian Marco Rignanese, Université Catholique de Louvain, Belgium, Bernard Amadon, CEA Arpajon, France, François Jollet, CEA Arpajon, France

Tutorial #8: Mathematica and WOLFRAM Language for Physics Education and Research
Instructors: Craig Carter, MIT, Marco Thiel, University of Aberdeen, Terry Honan, Blinn College

Tutorial #9: Statistical Analysis and Molecular Dynamics Simulations of Biological Systems
Instructors: Rafael C. Bernardi, University of Illinois at Urbana-Champaign, Anirvan Sengupta, Rutgers University

Tutorial #10: Introduction to Computational Quantum Nanoelectronics
Instructors: Anton Akhmerov, TU Delft, Netherlands, Christoph Groth, SPSMS, CEA, INAC Grenoble France, Xavier Waintal, SPSMS, CEA, INAC Grenoble France, Michael Wimmer, TU Delft, Netherlands

March Meeting: Editorial Events:

Sessions J1 and N1: Meet the APS Editors Reception & Coffee Break
Reception: Convention Center, TBD; Tuesday, March 15, 4:30 – 6:00 pm
Coffee Break: Convention Center, TBD; Wednesday, March 14, 10:45 - 11:30 am

The editors of the APS journals invite you to join them for a reception and a coffee break. The editors will be available to answer questions, hear ideas, and discuss comments about the journals.
DMP Executive Committee

The Executive Committee Officers and Members-at-Large for the 2016-2017 year, who begin their (terms begin following the March Meeting):

Officers:

Chair: Michael E. Flatté, (04/16 - 03/17)
University of Iowa

Chair Elect: Daniel S. Dessau, (04/16 - 03/17)
University of Colorado, Boulder

*Vice Chair: Amanda K Petford-Long, (04/16 - 03/17)
Argonne National Laboratory

Past Chair: John F. Mitchell, (04/16 - 03/17)
Argonne National Laboratory

Councilor: James Robert Chelikowsky, (01/13 - 12/16)
University of Texas, Austin

Secretary/Treasurer: Robert J. Nemanich, (04/14 - 03/17)
Arizona State University

Members-at-Large:

Julie Borchers, (04/14 - 03/17)
National Institute of Standards & Technology

David Burnham Tanner, (04/14 - 03/17)
Univ of Florida – Gainesville

Peter M. Gehring, (04/15 - 03/18)
NIST Center for Neutron Research

John Singleton, (04/15 - 03/18)
National High Magnetic Field Laboratory, Los Alamos National Laboratory

*Scott Chambers, (04/16 - 03/19)
Pacific Northwest National Laboratory

*Michelle Johannes, (04/16 - 03/19)
Naval Research Laboratory

*Newly elected