Call for Invited Speaker Suggestions

With this issue of the Newsletter, the Division of Materials Physics announces the program of DMP Focus Topics for the 2007 APS March Meeting (Denver, CO, March 5-9, 2007). A Focus Topic generally consists of a series of sessions, each of which is typically seeded with one invited talk, the remainder of the session being composed of contributed presentations.

DMP members are encouraged to make suggestions for invited speakers for these Focus Topics. The deadline for submitting such suggestions is August 30, 2006. Suggestions can be made in either of two ways: (1) by emailing the suggestion directly to the appropriate focus topic organizers who are listed after the Focus Topic descriptive paragraphs, or (2) by using the web-based form on the APS website at http://www.aps.org/units/dmp/invited.cfm.

If you send your suggestion by direct email, please provide the following information:

- The nominator’s name, affiliation, phone number and e-mail address.
- The suggested speaker’s name, affiliation, address, phone number, fax, and e-mail.
- The title of the suggested talk.
- A brief justification of the nomination (880 character limit).

The web-based nomination form contains fields for all of these items. If you use the web-based form, your invited speaker nomination will be sent automatically to the appropriate Focus Topic organizers when you push the “submit” button at the end of the process. However, it is advisable to send an email to the first-listed organizer asking for confirmation that the nomination has been received.

Finally, note that the contents of this Newsletter will be available electronically on the DMP website at http://www.aps.org/units/dmp. In case of any need for corrections or updates, these will also be posted at this location.
Focus Topics Descriptions [See back page for overview of DMP Focus Topics]

02.8.1 Spin-Dependent Phenomena in Semiconductors (GMAG/DMP/FIAP)
[see 06.11.5]

3.8.1 (09.9.1) Dielectric, Ferroelectric, and Piezoelectric Oxides (DMP)

This topic will focus on fundamental advances in the growth, characterization, and experimental as well as theoretical understanding of dielectric, ferroelectric, pyroelectric, and piezoelectric oxides in bulk, thin-film, superlattice, and nanostructured forms. Contributions on functional oxides of all structure types are encouraged, including perovskites, distorted fluoride (high-K dielectrics), wurtzite (ZnO), etc. Areas of interest include the physics of structural and ferroelectric phase transitions, lattice dielectric properties, the impact of disorder on cooperative behavior, progress in theory approaches to ferroelectricity and relaxor behavior, as well as understanding of synthesis and growth mechanisms. A major thrust will be to explore how bulk dielectric, ferroelectric, and piezoelectric properties are modified in thin-film, superlattice, or other nanoscale geometries, for example by the effects of strain, surfaces and interfaces, chemical environment and electrical boundary conditions.

Organizers:

Hans M. Christen
Oak Ridge National Laboratory
Materials Science and Technology Division & Center for Nanophase Materials Sciences
Bethel Valley Rd., Bldg. 3105
Oak Ridge, TN 37831-6056
Phone: (865) 574-5965
Fax: (865) 576-3676
Email: christenhm@ornl.gov

Andrew M. Rappe
Department of Chemistry
University of Pennsylvania
231 South 34th Street
Philadelphia, PA 19104-6323
Phone: (215) 898-8313
Fax: (215) 573-2112
Email: rappe@sas.upenn.edu

Stephen K. Streiffer
Argonne National Laboratory
Materials Science Division & Center for Nanoscale Materials
9700 S. Cass Ave.
Argonne, IL 60439
Phone: (630) 252-5832
Fax: (630) 252-4289
Email: streiffer@anl.gov

04.14.4 (16.12.10) Organic Electronics, Photonics, & Magnetics (DMP/DPOLY)

Organic- and polymer-based materials are being actively investigated for a wide range of electronic, photonic, magnetic physics and device applications. This focus topic covers the latest developments in these fields. Contributions are solicited in the areas of organic- and polymer-based conductor, semiconductor, and magnet physics (e.g., electronic structure, charge transport, optical properties, photonic crystals, NLO, magnetism, light induced magnetism, and spin transport studies) and device physics (e.g., electric and magnetic field effects, FETs, LEDs, photovoltaics, lasers, spin valves, and sensors). Both theoretical and experimental papers will be presented. Studies at the nano- and meso-scale are welcome.

Organizers:

Arthur Epstein
Department of Physics
The Ohio State University
191 West Woodruff Avenue
Columbus, Ohio 43210-1117
Phone: (614) 292-1133
Fax: (614) 292-3706
Email: epstein.2@osu.edu

Massimiliano Di Ventra
Department of Physics
University of California, San Diego
5430 Mayer Hall
9500 Gilman Drive
La Jolla, CA 92093-0319
Email: diventra@physics.ucsd.edu
Phone: (858) 822-6447
Fax: (858) 534-2232
05.11.1 MgB₂ & Other Novel Superconductors (DMP)

The discovery of superconductivity in MgB₂ has again demonstrated the potential of non-cuprate superconductors both in terms of high critical temperatures, currents and field, and in terms of fundamentally new superconducting states. Despite considerable theoretical and experimental progress, superconductivity in MgB₂ is still not understood in all details. This focus topic will cover both theory and experiment on diborides and related compounds. In the five years since the discovery of superconductivity in MgB₂, a number of other non-cuprate superconductors have been discovered, with exciting and not fully understood properties. Examples include PuCoGa₅, a heavy fermion superconductor, CaC₆, an intercalated graphite, Li, an elemental superconductor, and Ag₅Pb₂O₆, a free electron superconductor, each of them having a record Tc (by up to an order of magnitude) in their respective class of materials. These and other novel non-cuprate superconductors are the subject of this focus topic.

Organizers:
Igor Mazin
NRL, code 6390
4555 Overlook Ave SW
Washington, DC 20375
Phone: (202) 767-6990
Fax: (202) 404-7546
Email: mazin@nrl.navy.mil

David Mandrus
PO Box 2008, MS 6056
MST Division
Oak Ridge National Laboratory
Oak Ridge, TN 37831
Phone: (865) 574-6282
Fax: (865) 574-4814
Email: mandrusdg@ornl.gov

06.11.1 Theory & Simulation of Spin-Dependent Effects & Properties (DCOMP/DMP/GMAG)

This focus topic centers on recent advances in the theory and simulation of spin dependent properties including spin transport and dynamic magnetization processes, exchange coupling, spin relaxation, magnetic anisotropy and other spin and orbital polarization induced effects. We welcome contributions emphasizing new levels of understanding and/or predictions of spin transport effects (spin momentum transfer, anomalous Hall and Nernst effects, finite bias transport) and magnetic properties of nano-magnets (reduced dimension systems ranging from 0D-nano-particles to 1D and 2D systems such as nanowires and interfaces) including spin and orbital polarization induced effects. Methods include materials specific modeling approaches based on ab-initio techniques (including methods going beyond LDA) and approaches to couple these methods with methods suitable to larger scale systems in order to bridge various length and time scales. The approaches and topics might include, but are not limited to, atomic scale effective spin Hamiltonians, Monte-Carlo, Langevin dynamics, micromagnetic and hybrid modeling for proximity effects, interlayer magnetic coupling, exchange spring, exchange bias, magnetic quantum confinement, hysteresis modeling, and other spin dependent phenomena. We especially encourage contributions showing benefits of cross-coupling between theoretical and computational methods for topics such as the Berry phase, topology, DMFT, statistical coarse-graining, Wannier functions and large-scale DFT techniques for explaining and/or predicting specific experimental results and materials systems.

Organizers:
Oleg Mryasov
Seagate Research Center, Seagate Technology LLC.
1251 Waterfront PL.
Pittsburgh, PA 15222
Phone: (412) 918-7245
Fax: (412) 918-7032
Email: oлег.mрясов@seagate.com

Qian Niu
Department of Physics
The University of Texas at Austin
1 University Station C 1600
Austin, TX 78712-0264
Phone: (512) 471-7879
Fax: (512) 471-9637
Email: niu@physics.utexas.edu
This topic focuses on magnetic materials and phenomena at the nanometer-scale. Magnetic nanostructures include thin films, multilayers, nanoparticles, nanowires, nanorings, nanocomposites, core-shell structures, hybrid structures, magnetic point contacts and self-assembled as well as patterned magnetic arrays. This topic will cover both experimental and theoretical advances in low dimensional magnetism, proximity effects, interlayer magnetic coupling, exchange spring, exchange bias, magnetic quantum confinement, magnetic anisotropy, glassy dynamics, memory effect and other relaxation phenomena, inter-particle interactions, effects of structural disorder, modeling of hysteresis, thermal and quantum fluctuations, and other nanoscale magnetic phenomena. Of special interest is the fabrication of nanostructures with atomic-scale control using physical and chemical methods, self and directed assembly of nanostructure arrays, high-resolution characterization methods with site and/or element specificity, novel techniques for the creation of nanoscale magnetic features, and other unusual physical phenomena present in these systems.

Organizers:

Hariharan Srikanth
Department of Physics
University of South Florida
4202 East Fowler Ave
Tampa, FL 33620
Phone: (813) 974-2467
Fax: (813) 974-5813
Email: harihar@cas.usf.edu

Andrew Kent
Department of Physics
New York University
4 Washington Place
New York, NY 10003
Phone: (212) 998-7773
Fax: (212) 995-4016
Email: andy.kent@nyu.edu

This topic will explore recent advances in the fundamental physics and potential technological applications of complex oxide materials. Various intriguing phenomena associated with structural, magnetic, and electronic properties of transition-metal oxides result in large part from the complexity of their electronic structures and the close competition of multiple interactions. Fine-tuning of these factors can lead to large responses to external stimuli and the occurrence of striking phenomena. Sessions will focus on phenomena of current interest, such as colossal magnetoresistance, multiferroic behavior, electronic phase separation, and orbital and charge ordering, as well as specific materials classes that are receiving increased attention, including manganites, cobalt oxides (perovskites and the sodium cobaltates), and ruthenates. Both theoretical and experimental papers on complex oxides in bulk, thin-film, artificial-superlattice, and interface form are encouraged.

Organizers:

Tsuyoshi Kimura
Bell Laboratories, Lucent Technologies
600 Mountain Avenue, Rm. 1C-211
Murray Hill, NJ 07974
Phone: (908) 582-7577
Fax: (908) 582-4868
Email: kimura@lucent.com

Valery Kiryukhin
Dept. Physics and Astronomy
Rutgers University
Piscataway, NJ 08854
Phone: (732) 445-3899
Fax: (732) 445-4343
E-mail: vkir@physics.rutgers.edu

Warren E. Pickett
Department of Physics
University of California Davis
Davis CA 95616
Phone: (530) 752-0926
Fax: (530) 752-4717
Email: wepickett@ucdavis.edu
This topic will focus on experimental and theoretical investigations that elucidate and/or utilize the transport and transfer of spin, as well as magnetization dynamics, in metal-based magnetic systems. Topics of interest include all aspects of spin-dependent transport and scattering, in the diffusive, ballistic, tunneling and hot electron transport regimes as evidenced, for example, in giant magnetoresistance (GMR), tunneling magnetoresistance (TMR), tunneling spectroscopy of spin states, spin filtering and related effects. Furthermore, a main focus will be magnetization dynamics in confined geometries investigated both in the time and frequency domain. Also of particular interest are studies of the interplay between non-equilibrium carriers and magnetization dynamics in magnetic nanostructures. Additional topics include, but are not limited to, spin-charge-separation in transport processes including spin-diffusion and spin-relaxation, interfacial spin transport, spin injection and detection, optical and electronic control of spin coherence, and hyperfine effects; growth, characterization, electrical, optical and magnetic properties, and control of magnetic properties in ferromagnetic semiconductors and hybrid ferromagnet-semiconductor structures and devices; and developments in related fields, such as quantum dots, nanocrystals, nanowires, organic semiconductors, and quantum computing, that relate to spin-dependent phenomena in semiconductors.

Organizers:

Axel Hoffmann
Materials Science Division
Argonne National Laboratory
9700 South Cass Avenue
Argonne, IL 60439-4845
Phone: (630) 252-5469
Fax: (630) 252-9595
Email: hoffmann@anl.gov

Jonathan Z. Sun
IBM T. J. Watson Research Center
1101 Kitchawan Road
Yorktown Heights, NY 10598
Phone: (914) 945-1372
Fax: (914) 945-4440
Email: jonsun@us.ibm.com

Igor Zutic
Department of Physics
State University of New York at Buffalo
239 Fronczak Hall
Buffalo, NY 14260
Phone: (716) 645-2017 ext.183
Fax: (716) 645-2507
Email: zigor@buffalo.edu

Nitin Samarth
Department of Physics
Pennsylvania State University
104 Davey Lab, # 099
University Park, PA 16802-6300
Phone: (814) 863-0136
Fax: (253) 484-8667
Email: nsamarth@psu.edu

Tomasz Dietl
Laboratory for Cryogenic and Spintronic Research
Institute of Physics
Polish Academy of Sciences
al. Lotnikow 32/46
PL 02-668 Warszawa, Poland
Phone: +48 22 843-5324
Fax: +48 22 847-5224
Email: dietl@ifpan.edu.pl
07.8.1 Carbon Nanotubes & Related Materials (DMP)

Broad interest in the fundamental properties of carbon nanotubes and their exploitation in a wide range of applications continue at an increasing pace, due in large part to their unique chemical, mechanical, thermal, optical, opto-electronic and electrical properties. This focus topic concerns recent developments in (1) the fundamental understanding of nanotube and graphene nanoribbon properties, including synthesis, processing, purification, electrical, optical, opto-electronic, thermal, mechanical, and chemical properties and (2) on potential applications, such as nanosensors, nanoprobes, field emitters, display devices, field-effect transistors, composite materials, and high surface area storage media. Experimental and theoretical contributions are solicited in the following areas: 1) synthesis and characterization of doped and pure carbon, boron-nitride nanotubes, and nanohorns, 2) optical spectroscopy of carbon and boron-nitride nanotubes, 3) electrical and opto-electronic properties of carbon nanotubes and graphene nanoribbons, 4) thermal and magnetic properties of carbon nanotubes, 5) mechanical properties of nanotubes and their composites, 6) chemical functionalization, chemical and bio-sensing properties, and separation techniques 7) electrical transport and devices, 8) gas adsorption and storage, 9) field emission, 10) structure and properties of filled carbon nanotubes, and nanotube peapods 11) multifunctional nanotube composites and 12) other experimental and theoretical results from quasi-one dimensional systems which relate to carbon nanotubes, such as graphene nanoribbons.

Organizers:

Jisoon Ihm
Department of Physics
Seoul National University
Seoul, 151-747, Korea
Phone: 8211-9115-7865
Email: ihm@snu.ac.kr

James Hone
Department of Mechanical Engineering
Columbia University
500 W. 120th St., Rm. 220 Mudd
New York, NY 10027
Phone: (212) 854-6244
Email: h2228@columbia.edu

Stephen K. Doorn
Los Alamos National Lab
C-CSE, Chemical Sciences and Engineering
Mailstop J563
Los Alamos, NM 87545
Phone: (505) 667-2541
Fax: (505) 665-8067
Email: skdoorn@lanl.gov

Vasili Perebeinos
IBM Research Division
T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598
Phone: (914) 945-3567
Fax: (914) 945-4531
Email: kperebe@us.ibm.com

07.8.2 (09.9.2) Complex Oxides (DMP/GMAG)
[see 06.11.3]

07.8.3 (17.13.1 & 21.17.4) Computational Nanoscience (DMP/DCOMP)

When the size of the physical systems is reduced to the nanometer scale, many novel physical phenomena emerge. Computational studies can be used to interpret experimental observations of these phenomena, provide much-needed insight into their underlying physical origin, and thus design nanomaterials with desired properties. Recent advances in computational methodologies for studying nanoscale materials have made it possible to reliably predict many physical and chemical properties of nanostructures that span multiple time and length scales. This topic will provide a comprehensive overview of recent computational work in the field of nanoscale materials with particular emphasis on techniques that allow an efficient multi-scale integration from the micro- to the nanoscale. Subjects to be covered include, but are not limited to, computational studies of the growth, structural, mechanical, vibrational, electronic, opto-electronic and catalytic properties of nanoscale structures and materials and the interplay between functionality and local structural environment.

Organizers:

Talat S. Rahman
Department of Physics
Kansas State University
Manhattan, KS 66506
Phone: (785) 532-1611
Fax: (785) 532-6806
Email: rahman@phys.ksu.edu

Sanjay V. Khare
Department of Physics and Astronomy
University of Toledo
Toledo, OH 43606
Phone: (409) 530-2292
Fax: (409) 530-2723
Email: khare@physics.utoledo.edu

09.9.1 Dielectric, Ferroelectric, & Piezoelectric Oxides (DMP)
[see 03.8.1]

09.9.2 (07.8.2) Complex Oxides (DMP/GMAG)
[see 06.11.3]
09.9.3 (13.6.6 & 14.9.3) Surfaces & Interfaces of Correlated Electron Systems (DMP)

Correlated Electron Systems exhibit a wide range of intellectually challenging and potentially technologically important electronic properties, including magnetism (often with high spin polarization), high temperature superconductivity, metal-insulator transitions and novel forms of charge and orbital ordering. This DMP Focus Topic explores the fundamental question “how do the characteristic correlated electron properties change near surfaces and interfaces or with dimensional confinement?” It aims to provide a scientific context for work in basic and applied physics, materials science and chemistry related to growth of films, superlattices, and nanoparticles and more complex nanostructures of transition metal oxide, organic, heavy fermion and other correlated electron compounds, to development and application of experimental probes of surfaces and buried interfaces, to creation of new theoretical techniques for studying these systems, and to the design, fabrication and properties of novel devices.

Organizers:
A. J. Millis
Department of Physics
Columbia University
538 West 120th Street
New York, NY 10027
Phone: (212) 854-3336
Fax: (212) 854-3379
Email: millis@phys.columbia.edu

Ward Plummer
301 South College
The University of Tennessee
Knoxville, TN 37996-1200
Phone: (865) 974-3055
Fax: (865) 974-3895
Email: eplummer@utk.edu

12.7.1 Friction, Fracture, & Deformation (DMP/GSNP)

This topic will explore recent developments in the areas of friction, fracture, and deformation in materials-research areas. It will cover all length scales from the nanoscale to tectonic scales. Topics of interest include tribochemistry, nanoscale mechanics including AFM indentation phenomena, dislocation patterns, grain boundary and interface effects, fracture initiation, crack propagation, the tribology of smooth and rough surfaces including fractal interfaces, and material deformation under applied stress including cutting. We welcome experimental, computational, and analytical studies of atomistic, mesoscopic, continuum, statistical, and multiscale aspects of deformation, friction, and fracture instabilities in various classes of solids, including granular, crystalline, amorphous, micro-fabricated, and nano-structured solid systems of metallic, silicon-based, ceramic, glassy, or polymeric type.

Organizers:
Ian Robertson
Department of Materials Science and Engineering
University of Illinois
Urbana IL 61801
Phone: (217) 333-1440
Email: ianr@ad.uiuc.edu

Elisa Riedo
School of Physics
Georgia Institute of Technology
Atlanta, GA 30332-0430
Phone: (404) 894-6580
Email: elisa.riedo@physics.gatech.edu

Elizabeth Bouchaud
Service de Physique et Chimie des Surfaces et Interfaces
DSM/DRECAM/SPCSI
CEA Saclay, F-91191 Gif sur Yvette, France
Phone: +44-0169082655
Email: Elisabeth.Bouchaud@cea.fr

Division of Materials Physics • Summer 2006
13.6.1 Optical Properties of Nanostructures (DMP)

Tremendous advances in the fabrication and optical characterization of nanoscale systems have been made in recent years. Increasingly precise control of nanostructure geometry, composition and size is possible. Multicomponent structures, nanostructures with internal structure, and arrays of nanostructures can be made. Individual nanostructures can be probed and characterized. Atomistic theory of these systems is possible. This focus topic is devoted to techniques to predict and understand the optical properties of materials at the nanoscale. The emphasis will be on current topics. Contributions from both experiment and theory are encouraged. Areas of interest include semiconductor nanocrystals and nanowires formed by chemical means, metallic nanoparticles, quantum dots self-assembled during MBE growth or formed by lithography after growth, hybrid structures combining metallic and semiconductor nanostructures, arrays of structures, linear and nonlinear optical spectroscopy and dynamical response of these nanosystems, spectroscopy of individual nanosystems, quantum optics of these structures, plasmonics in these systems, and theory, including the full range of approaches from empirical to ab initio needed to describe these systems.

Organizers:

Garnett W. Bryant
National Institute of Standards and Technology
Atomic Physics Division
100 Bureau Drive, Stop 8423
Gaithersburg, MD 20899-8423
Phone: (301) 975-2595
Fax: (301) 990-1350
Email: garnett.bryant@nist.gov

Philippe Guyot-Sionnest
University of Chicago
Department of Chemistry and Physics
James Franck Institute, CIS E-111
929 E. 57th St
Chicago, IL 60637
Phone: (773) 702-7461
Fax: (773) 702-5863
Email: pgs@uchicago.edu

13.6.2 (14.9.2) Fundamental Challenges in Transport Properties of Nanostructures (DMP)

This focus topic will address issues which are critical to the understanding, characterization, and control of electrical transport phenomena in nanostructures, including single-molecule devices, self-assembled monolayers, point contacts, semiconductor and metallic nanowires, quantum dots, nanoparticles, and other novel structures. Contributions are solicited in the following areas: (1) experimental studies of electrical transport through nanoscale structures; (2) proximal sensing related to transport through nanoscale structures; (3) theoretical advances in modeling electrical transport characteristics or proximal sensing of nanoscale systems, including ab initio materials approaches and many-body theory, and (4) controlled fabrication of nanoscale devices including synthesis, self assembly, and other bottom-up approaches, novel lithographic and other top-down techniques, and especially integration with contacts. Note that other focus topics are organized more specifically on: carbon nanotubes; organic electronics, photonics, and magnetics; and thermal, thermoelectric, and mass transport at the nanoscale.

Organizers:

Harold U. Baranger
Department of Physics
Duke University, Box 90305
Durham, NC 27708-0305
Phone: (919) 660-2598
Fax: (919) 668-2525
Email: baranger@phy.duke.edu

Charles M. Marcus
Department of Physics
Harvard University
17 Oxford St., Cambridge MA 02138
Phone: (617) 495-3908
Fax: (617) 384-7302
Email: marcus@harvard.edu
13.6.3 (23.8.5) Materials Issues for Quantum Computing & Quantum Engineering (DMP)

Over the last few years it has become increasingly important to define and assess the quality of the materials systems used in producing new solid state quantum devices. The engineering of the quantum circuits alone (such as RF-SETs, quantum bits or nanomechanical resonators) does not necessarily guarantee proper coherent operation. This focus topic is aimed at discussing ways to measure, characterize, and understand the relationship between the physical properties of the materials systems used in fabricating quantum devices and the coherent behavior of these devices themselves. Abstracts for solid state materials systems ranging from Josephson junction-based quantum devices, quantum dots, to electrical or nanomechanical quantum systems are encouraged.

Organizers:
Raymond W. Simmonds
National Institute of Standards and Technology
Quantum Metrology Division 817
325 Broadway St
Boulder, CO 80305
Phone: (303) 497-4403
Fax: (303) 497-3042
simmonds@boulder.nist.gov

Bruce E. Kane
Laboratory for Physical Sciences
Quantum Computing Group
8050 Greenmead Drive
College Park, MD 20740
Phone: (301) 935-6400
Fax: (301) 935-6723
kane@lps.umd.edu

13.6.4 (16.12.5) Thermoelectric Materials & Phenomena (FIAP/DMP)

Applications of thermoelectric materials in energy conversion have attracted a great deal of attention recently. The development of novel materials and new synthesis strategies, combined with emerging phenomena is providing exciting opportunities to tune the material’s thermoelectric properties over a broad range of length scale and degrees of freedom. This focus topic intends to examine the latest research of thermoelectric phenomena in materials, which include electrical and thermal transport properties at macroscopic, microscopic and nanometer scales. One of the emphasized areas will be the impact of nano-scale substructure, chemical tuning, and electron correlation on thermoelectric properties. Theoretical studies of electron and phonon transport, band structure and crystal chemistry of materials, thermodynamic analysis and energy transferring processes will also be highlighted. Comprehensive understanding of thermoelectric phenomena is critical for guiding the design of novel materials for advanced thermoelectric cooling and energy conversion applications.

Organizers:
Jihui Yang
Materials and Processes Laboratory
General Motors R&D Center
Warren, MI 48090
Phone: (586) 986-9789
Fax: (586) 986-3091
Email: jihui.yang@gm.com

Qiang Li
Condensed Matter Physics and Materials Science Department,
Bldg. 480
Brookhaven National Laboratory
Upton, NY 11973-5000
Phone: (631) 344-4490
Fax: (631) 344-4071
Email: qiangli@bnl.gov

13.6.5 (06.11.2) Magnetic Nanostructures: Materials & Phenomena (DMP/GMAG)

13.6.6 (9.9.3 & 14.9.3) Surfaces & Interfaces of Correlated Electron Systems (DMP)

13.6.7 (14.9.1) Controlled Self-Organization of Functional Thin Film Nanostructures (DMP)
14.9.1 (13.6.7) Controlled Self-Organization of Functional Thin Film Nanostructures (DMP)

Exploiting growth and kinetic instabilities to form surface nanostructures and patterns with desirable functionality has emerged as a key element in strategies for nanoscale fabrication. The success of this approach depends on fundamental understanding of the evolution of thin-film morphology, atomic composition, and electronic structure. This focus topic will highlight recent experimental and theoretical developments associated with the formation and stability of nanostructures, surfaces, interfaces, and thin films, of hard and soft condensed matter, with particular emphasis on tailoring their functional (i.e., mechanical, electrical, optical and magnetic) properties. Novel hybrid nanostructures with potential relevance to biology, catalysis, and energy research will also be addressed.

Organizers:
Feng Liu
Department of Materials Science & Engineering
University of Utah
Salt Lake City, UT 84112
Phone: (801) 587-7719
Fax: (801) 581-4816
Email: fliu@eng.utah.edu

Hanno Weitering
Oak Ridge National Laboratory
PO Box 2008, MS6057
Oak Ridge, TN 37831-6057
Phone: (865) 574-1911
Fax: (865) 576-8135
Email: hanno@ornl.gov

Ellen D. Williams
Department of Physics
University of Maryland
College Park, MD 20742-4111
Phone: (301) 405-6156
Email: edw@umd.edu

14.9.2 Fundamental Challenges in Transport Properties of Nanostructures (DMP) [same as 13.6.2]

14.9.3 Surfaces & Interfaces of Correlated Electron Systems (DMP) [same as 9.9.3 & 13.6.6]

16.12.5 Thermoelectric Materials & Phenomena (FIAP/DMP) [same as 13.6.4]

16.12.6 Hydrogen Storage: Materials, Measurements, & Modeling (FIAP/DMP)

Developing safe, cost-effective, and practical means of storing hydrogen is crucial for the advancement of hydrogen and fuel-cell technologies. The current focus is on solid-state materials allowing low-pressure storage, including absorption on high surface area materials like Carbide-Derived Carbons (CDC), absorption in metal hydrides, such as the sodium alanates; and hydrogen binding in chemical compounds such as sodium borohydrides. Despite tremendous advances in recent years, the current hydrogen storage materials/concepts do not meet goals in terms of storage capacity, absorption-desorption temperatures, and hydrogen charging-releasing rates that are required for practical applications. This focus topic will bring researchers together to discuss current developments in state-of-the-art hydrogen storage materials, measurements, modeling and theory. Contributions are solicited in which include:

- Novel concepts and materials,
- New adsorbents such as metal-organic frameworks and metal-carbon complexes, B-C-N, aerogels, and polymer materials
- Optimizing hydrogen storage materials by doping, scaffolding, and alloying
- Novel synthesis methods of hydrogen storage materials
- Nanoscale phenomena and its effect on the thermodynamics and kinetics
- Advanced characterization and measurement techniques
- Theory and Modeling
- Atomistic understanding of hydrogen-metal bonding and hydride stability
- Fundamental thermodynamic and kinetic issues
- Catalyst mechanism and effects
- High-throughput/combinatorial approaches in hydride and catalyst discovery
- Hydrogen bulk and surface diffusion and dynamics

Organizers:
George Crabtree
Materials Science Division; Bldg. 223
Argonne National Laboratory
9700 S. Cass Avenue
Argonne, IL 60439
Phone: (630) 252-5509
Fax: (630) 252-8042
Email: crabtree@anl.gov

Taner Yildirim
NIST Center for Neutron Research
National Institute of Standards & Technology
Gaithersburg, MD 20899-8562
Phone: (301) 975-6228
Fax: (301) 921-9847
Email: taner@nist.gov
16.12.7 Materials & Applications for Solar Energy (FIAP/DMP)

New materials, in particular nanostructured ones, are promising for a wide range of solar energy conversion devices, as well as efficient collection of heat generated by solar concentrators. For example, nanostructured architectures which efficiently absorb the full solar spectrum offer the potential to increase conversion efficiencies to nearly the thermodynamic limit. In addition, nanocomposite materials with simultaneous high electrical conductivity and low thermal conductivity offer great promise for significant enhancement in thermophotovoltaic conversion efficiency. This focus topic is on the materials issues and opportunities associated with solar and thermal energy conversion. We anticipate that the topic will bring together theorists and experimentalists from disciplines including physics, chemistry, chemical engineering, materials science, and electrical engineering, in order to address both fundamentals and device applications. Possible areas include the design and processing of materials to enable enhanced performance photovoltaics and thermophotovoltaics.

Organizers:

Rachel S. Goldman
Dept. of Materials Science & Engineering
University of Michigan
2300 Hayward Street
Ann Arbor, MI 48109-2136
Phone: (734) 647-6821
Fax: (734) 763-4788
Email: rsgold@engin.umich.edu

Michael D McGehee
Dept. of Materials Science and Engineering
Stanford University
Mail Code 2205
Stanford, CA 94305-2205
Phone: (650) 736-0307
Fax: (650) 723-3044
Email: mmcgehee@stanford.edu

16.12.11 Spin Transport & Magnetization Dynamics in Metal-Based Systems (GMAG/DMP/FIAP)

[see 06.11.4]

16.12.12 (02.8.1) Spin-Dependent Phenomena in Semiconductors (GMAG/DMP/FIAP)

[see 06.11.5]

17.13.1 (21.17.4) Computational Nanoscience (DMP/DCOMP)

[see 7.8.3]

17.13.2 Theory & Simulation of Magnetism & Spin Dependent Properties (DCOMP/DMP/GMAG)

[see 6.11.1]

19.3.1 Earth & Planetary Materials (DMP/DCOMP)

This focus topic on Earth and Planetary Materials will highlight new experimental, computational, and theoretical approaches for understanding a variety of naturally occurring materials, from the core to the surface of solar and extra-solar planets. The main interest lies in the exploration of ices, fluids, minerals, and liquids and related complex and/or imperfect materials over the wide range of relevant thermodynamics conditions. Recent advances in theoretical and experimental techniques have led to breakthroughs in our understanding of the physical and chemical properties of Earth and planetary materials that were deemed inconceivable only a few years ago. For example, progress in laser-based spectroscopy, the second- and third-generation synchrotron sources, static and dynamic compression techniques, and advanced theoretical methods combined with rapidly increasing computer power has fundamentally altered how we investigate these materials and their interaction with the environment. This focus topic also encompasses advances in shock-wave techniques, diagnostics, and computation on all classes of materials. Of particular importance is that we now have in situ methods capable of determining the properties and behavior of materials under conditions ranging from the pressures and temperature of giant planetary interiors to ambient conditions. The goal of these sessions will be to explore the science and the technological advances that inspire research in this area.

Organizers:

Lars Stixrude
Dept. of Geophysical Sciences
University of Chicago
5251 Broad Branch Rd. NW
Washington, DC 20015
Phone: (202) 478-8951
Fax: (202) 478-8464
Email: stixrude@gl.ciw.edu

Russell J. Hemley
Geophysical Laboratory
Carnegie Institution of Washington
5251 Broad Branch Rd. NW
Washington, DC 20015
Phone: (202) 478-8951
Fax: (202) 478-8464
Email: hemley@gl.ciw.edu

21.17.4 (17.13.1) Computational Nanoscience (DMP/DCOMP) [see 07.8.3]

23.8.5 Materials Issues for Quantum Computing & Quantum Engineering (DMP) [see 13.6.3]
<table>
<thead>
<tr>
<th>Focus Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>01. Metals</td>
<td></td>
</tr>
<tr>
<td>02. Semiconductors</td>
<td>02.8.1 Spin-Dependent Phenomena in Semiconductors (GMAG/DMP/FIAP) [see 06.11.5]</td>
</tr>
<tr>
<td>03. Insulators and Dielectrics</td>
<td>03.8.1 (9.9.1) Dielectric, Ferroelectric & Piezoelectric Oxides (DMP)</td>
</tr>
<tr>
<td>05. Superconductivity</td>
<td>05.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>06. Magnetism (Experiment, Theory, Applications)</td>
<td>06.11.1 (17.13.2) Theory & Simulation of Spin-Dependent Effects & Properties (DCOMP/DMP/GMAG)</td>
</tr>
<tr>
<td>07. Complex Structured Materials</td>
<td>07.8.1 Carbon Nanotubes & Related Materials (DMP)</td>
</tr>
<tr>
<td>08. Fluids and Soft Matter</td>
<td>08.14.4 (16.12.10) Organic Electronics, Photonics, & Magnetics (DMP/DPOLY)</td>
</tr>
<tr>
<td>09. Phase Transitions and Strongly Correlated Systems</td>
<td>09.9.1 (03.8.1) Dielectric, Ferroelectric, & Piezoelectric Oxides (DMP)</td>
</tr>
<tr>
<td>10. Biological Physics</td>
<td>10.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>11. Chemical Physics</td>
<td>11.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>12. Statistical and Nonlinear Physics</td>
<td>12.7.1 Friction, Fracture, & Deformation (DMP/GSNP)</td>
</tr>
<tr>
<td>13. Artificially Structured Materials</td>
<td>13.8.1 (14.9.3) Surfaces & Interfaces of Correlated Electron Systems (DMP) [see 9.9.3]</td>
</tr>
<tr>
<td>14. Surfaces, Interfaces, and Thin Films</td>
<td>14.9.3 (13.6.6) Surfaces & Interfaces of Correlated Electron Systems (DMP) [see 9.9.3]</td>
</tr>
<tr>
<td>15. Instrumentation and Measurements</td>
<td>15.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>16. Applications</td>
<td>16.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>17. General Theory (Theoretical Methods)</td>
<td>17.13.1 (21.17.4) Computational Nanoscience (DMP/DCOMP) [see 7.8.3]</td>
</tr>
<tr>
<td>18. General</td>
<td>18.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>19. High Pressure Physics</td>
<td>19.3.1 Earth & Planetary Materials (DMP/DCOMP)</td>
</tr>
<tr>
<td>20. Quantum Fluids and Solids</td>
<td>20.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>21. Atomic, Molecular, & Optical (AMO) Physics</td>
<td>21.17.4 (17.13.1) Computational Nanoscience (DMP/DCOMP) [see 7.8.3]</td>
</tr>
<tr>
<td>22. Physics Education</td>
<td>22.11.1 MgB₂ & Other Novel Superconductors (DMP)</td>
</tr>
<tr>
<td>23. Quantum Information, Concepts, and Computation</td>
<td>23.8.5 Materials Issues for Quantum Computing & Quantum Engineering (DMP) [see 13.6.3]</td>
</tr>
</tbody>
</table>