Call for Input in Recommending Invited Speakers

DMP Focused Sessions typically include an invited speaker and contributed talks. DMP General sessions consist solely of contributed talks. Focused Sessions organizers are empowered to recommend invitees to the DMP Executive Committee for approval. All official invitations for the entire March Meeting are issued uniformly by the APS Executive Officer and no one else. If you would like input into the process, send your
suggestions to the appropriate Focused Session organizers listed in the Call for Abstracts elsewhere in this issue.

The format you use is free-style, but please include a title, a brief descriptive paragraph, and the name, address, telephone and FAX number of both the proposed speaker and the nominator.

Methods to Access the DMP Call for Abstracts

1. Check your personal paper version of the DMP August 1996 Newsletter.
2. Check your personal e-mail version of the August Newsletter.
3. Check the Oct. or Nov. 1996 issue of the APS Meeting News.
4. Check the DMP Homepage: /units/dmp/

Dates To Remember...

Aug. 15: Deadline for submitting suggestions for invited speakers to focused-session organizers.

Dec. 6: Deadline for all March Meeting abstracts (contributed and invited) due at APS. Sending an extra copy to your focused session organizers is highly recommended.

Feb. 15: Deadline for DMP Fellowship Nominations due at APS Headquarters.

March 17-21, 1997: APS March Meeting, Kansas City, MO

DMP HomePage Debuts

We invite you to visit the DMP Homepage at /units/dmp/. If you do so, here is a glimpse of the beginning of it. Help us improve it with your suggestions and contributions to a new 'Images of Materials' section.

Call for Abstracts for 1997 APS March Meeting DMP

FOCUSED SESSIONS:

15(a) Materials Theory: Computer Simulation of Dynamical Phenomena

Abstracts are solicited in the areas of computer simulation of dynamical and/or kinetic phenomena in condensed matter. Topics include, but are not limited to, diffusion, interface roughening, defect (dislocation, grain boundary, etc.) migration, growth phenomena (vapor phase film growth, solidification, solid state reactions, etc.), fracture, and microstructural evolution (grain growth, crystallographic texture development, void
formation, etc.). Papers based upon atomistic (classical or quantum-based forces), microstructural and/or continuum modeling are encouraged. New developments in computer simulation of dynamical phenomena in condensed matter will be emphasized.

Organizers:

Arthur F. Voter
Theoretical Division
MS B268
Los Alamos National Laboratory
Los Alamos, NM, 87545,
phone: (505) 988-5602
fax: (505) 665-3909
email: afv@t12.lanl.gov

David J. Srolovitz
Dept. of Materials Science and Engineering
University of Michigan
Ann Arbor, MI 48109-2136
phone: (313) 936-1740
fax: (313) 763-4788
email: srol@umich.edu

15(b) Materials Theory: Electronic and Atomic Structure

This session will focus on the application of quantum theoretical methods to materials. Specifically, submissions which involve electronic structure methods to predict structural and electronic properties of materials are encouraged. Typical topics to be covered within this session will include materials-related applications of large-N systems, pseudopotentials, quantum Monte Carlo methods, methods for ‘quantum’ molecular dynamics, basis sets methods, real space methods, parallel computing, and density functional theory.

Organizers:

James R. Chelikowsky
Department of Chemical Engineering and Materials Science
University of Minnesota
Minneapolis, MN 55455
phone: (612) 625-4837
fax: (612) 626-7246
email: jrc@msi.umn.edu

James W. Davenport
Department of Applied Science,
Bldg. 179A Brookhaven National Laboratory
15(c) Fullerenes, Carbon Nanotubes, and Related Materials

These sessions will focus on experimental and theoretical research involving fullerenes, carbon nanotubes, and related materials such as organic derivatives or inorganic compounds with similar topologies. Representative topics include electronic structure and transport, superconductivity, high pressure effects, formation and reaction mechanisms, photochemical, magnetic, vibrational, thermal and mechanical properties.

Organizers:

Rodney Ruoff
Washington University
Physics Department
St. Louis, MO 63130
email: ruoff@howdy.wustl.edu

James Schilling
Washington University
Physics Department
St. Louis, MO 63130
phone: (314) 935-6239
fax: (314) 935-6239
email: schill@howdy.wustl.edu

John Mintmire
Naval Research Laboratory
Chemistry Division, Code 6179
Washington, DC 20375
phone: (202) 767-2026
fax: (202) 767-3321
email: mintmire@alchemy.nrl.navy.mil
15(d) Granular Materials, Avalanches, Fracture, and Related Instabilities

The goal is to explore the relationships between these topics as applied to wide range of materials and length scales, from macroscopic processes in granular materials to mesoscopic instabilities in electronic transport or magnetic flux bundle arrangements. The recognition of such relationships has led to some very exciting interdisciplinary research in recent years. Abstracts on all aspects of granular materials, avalanches, and dynamical phase transitions from solid-like to a fluid-like phase in materials are solicited. We intend to provide a stimulating atmosphere, characterized by an unusually wide point of view and perspective, in which all aspects of the fundamentals of these complex materials problems can be discussed. We plan to highlight recent progress on the dynamics of granular materials, which is a subject of great interest to many disciplines in science and engineering. The unusual properties of granular materials (e.g., segregation, arching, bistability, onset of collective motion) are currently under intense scrutiny using a variety of methods, including novel imaging techniques. We also plan to highlight recent progress on dynamical instabilities in magnetic, superconducting, or semiconducting systems. Here, avalanching or breakdown are found on mesoscopic length scales, and, again, many novel observation techniques have recently been developed. We envision to devote a special session to recent results on dynamical phase transitions in these systems, emphasizing the interplay between plastic and elastic deformations. A session devoted to fracture is anticipated as well.

Organizers:

Heinrich M. Jaeger
University of Chicago
Chicago, IL 60637
phone: (312) 702-6074
email: jaeger@rainbow.uchicago.edu

Robert P. Behringer
Duke University
Durham, NC 27706
phone: (919) 660-2550
email: bob@phy.duke.edu

15(e) Critical Currents in High Temperature Superconductors

We will focus on recent developments in our understanding of the physics and materials science of enhanced critical currents in high temperature superconducting materials. Abstracts are solicited on techniques to enhance vortex pinning and the connectivity of polycrystals, and on physical measurements and theory which are relevant to these phenomena. Some areas which could be emphasized are bulk pinning in single crystals, in ceramics, and thin and thick films, particularly biaxially textured thick films, experimental and numerical studies of pinning and vortex dynamics in the presence of well characterized defects such as damage tracks produced by high energy heavy ion
bombardment and splayed configurations of columnar disorder. The strong correlation between material anisotropy and the position of the irreversibility line makes studies of alterations to anisotropy by chemistry and by correlated defect structures also of interest. This includes studies of the effect of correlated defects on the dimensionality of the vortex system. We welcome abstracts on vortex and flux imaging experiments and computer simulations of vortex dynamics in the presence of various pinning defect structures. Attempts to understand all the effects controlling the critical current density of high temperature superconductors are encouraged, including appropriate experiments on low temperature superconductors.

Organizers:

L. Krusin-Elbaum
IBM T.J. Watson Research Center
Yorktown Heights, NY 10598
phone: (914) 945-2548
fax: (914) 945-2141
email: elbaum@watson.ibm.com

M. P. Maley
Los Alamos National Laboratory
Los Alamos, NM 87545
phone: (505) 665-0189
fax: (505) 665-3164
email: maley@rayleigh.lanl.gov

D. C. Larbalestier
University of Wisconsin
Madison, WI 53706
phone: (608) 263-2194
fax: (608) 263-1087
email: larbales@engr.wisc.edu

15(f) Coercivity in Rare-Earth Magnets: Theory and Practice

Experimental and theoretical or modeling abstracts are solicited for this session which will deal with increasing the coercivity of permanent magnet materials. There is widespread interest today in the physics of the magnetization process in magnetic materials, which provides the means for understanding and developing new magnetic materials with improved properties such as enhanced coercivity and maximum energy product. Pushing magnetic materials towards the theoretical limit of a maximum energy product is a major challenge. Further progress can only be achieved now through a more thorough understanding of the fundamental magnetization mechanisms. The session will include abstracts discussing the origins of coercivity in magnetic materials, and the effects of various factors such as magnetocrystalline anisotropy and domain wall pinning on coercivity of magnetic materials. In addition abstracts on recent developments in the
use of computer modelling and simulation methods for predicting magnetic properties are sought. Abstracts are also solicited on recent progress in permanent magnets which can operate at higher temperatures, through increase in the Curie temperatures of known hard magnet materials such as samarium-cobalt or neodymium-iron-boron; or by discovery of new hard magnetic materials. This Focus Session is jointly sponsored by DMP and TGMAG.

Organizers:

Al Zeller
NSCL Cyclotron Laboratory
Michigan State University
East Lansing, MI 48824
phone: (517) 333-6395
fax: (517) 353-5967
email: zeller@nscl.msu.edu

S. G. Sankar
Advanced Materials Corporation
700 Technology Drive
P.O. Box 2950
Pittsburgh, PA 15230-2950
phone: (412) 268 5649
fax: (412) 268 3300
email: sankar@advanced-material.com

15(g) Magnetic Nanostructures and Heterostructures

These focused sessions will emphasize experimental and theoretical advances in novel and artificial magnetic structures whose properties are controlled by limited dimensions at the nanometer length scale. Surface and interface phenomena in ultrathin films, superlattices, nanocrystalline and granular films, nanocomposites, heterostructures and dots are of interest. Emphasis will be placed on growth and fabrication of nanostructures including atomic-scale control and characterization of interfaces, element-sensitive methods to probe magnetic properties, and novel deposition techniques to create magnetic features with nano-scale lateral dimensions. Abstracts that address topics such as low-dimensional phenomena, interlayer exchange coupling and quantum confinement, intermetallic compound and alloy thin films, effects of disorder on magnetic anisotropy and coupling, and magneto-transport phenomena including spin-polarized tunneling and spin-valve structures are also most welcome.

Organizers:

Eric Fullerton
Materials Science Division
Argonne National Laboratory
15(h) Magnetoresistive Oxides

Abstracts are solicited on the properties of conducting magnetic oxides that exhibit unusual magnetoresistive properties. While the doped manganite perovskites are prototypical materials, other compounds such as pyrochlores are appropriate for inclusion in the session. Experimental and theoretical results on the nature of the electronic, magnetic, and structural properties, the effects of substitutions and doping, the role of microstructure and lattice distortions, the behavior of thermodynamic properties, and the presence of field-induced phase transitions are all appropriate to this session. Reports of new magnetoresistive materials and oxide-based heterostructures that have potential applications are also welcomed.

Organizers:

Peter Schiffer
Department of Physics
Univ. of Notre Dame
Notre Dame, IN 46556
phone: (219) 631-7262
fax: (219) 631-5952
email: peter.schiffer.1@nd.edu

Myron Salamon
Dept. of Physics
104 S. Goodwin Ave.
Urbana, IL 61801
phone: (217) 333-6186
fax: (217) 244-2278
email: salamon@uiuc.edu

15(i) Silica Waveguides and Fibers

Silica fibers and planar waveguides are playing an increasingly important role in
communications technologies, not only as passive transmissive elements, but increasingly as active sources and amplifiers, modulators, switches, and optical pulse-formers. This session will focus on the materials physics of guided-wave and fiber silica optical elements.

Specific areas covered include: fundamental limits: Rayleigh scattering limits to propagation loss, effects of waveguide bends and micro-roughness, dispersion control, compositional effects, defect physics and chemistry; extrinsic effects: photosensitivity, hydrogen loading, Bragg gratings, poling for second-order nonlinearities; intrinsic optical nonlinearities: four-wave mixing, self-phase modulation, soliton formation and propagation; and rare-earth doped structures: gain, amplification and lasers.

Organizers:

Steven R. J. Brueck
University of New Mexico
Center for High Technology Materials
Albuquerque, NM 87131
phone: (505) 277-6033
fax: (505) 277-6433
email: brueck@chtm.unm.edu

Roger H. Stolen
AT&T Research
Room 4D-335
Crawfords Corner Road
Holmdel, NJ 07733
phone: (908) 949-7852
fax: (908) 949-6010
email: stolen@hogpa.ho.att.com or stolen@research.att.com

15(j) Phase Transformations

Phase transformations has always been an intriguing area of research in materials physics and has received increasing attention in recent years. Materials frequently exhibit novel and critical behavior in the vicinity of a phase transition, and can be strongly influenced by complex long-lived morphologies that often emerge during the kinetics of phase transformations. The focus of this session will be on experimental, analytical and numerical approaches to understanding various nontraditional and novel aspects of phase transformations. A wide range of topics will be considered: equilibrium and dynamic properties, metastable phases, diffusional and diffusionless transformations, transitions at surfaces and interfaces, melting, amorphization, interfacial motion, order/disorder transitions, phase separation, critical phenomena and dynamical scaling behavior.

Organizers:

Ken Elder
15(k) Wide-Band-Gap Semiconductors

This session will focus on the materials physics of wide-band-gap semiconductors used for short-wavelength optoelectronics and high-temperature or high-power applications. Experimental and theoretical abstracts are solicited in the field of III-V nitrides, wide-gap II-VI compounds, and SiC. All aspects of this very active and growing field will be covered, including epitaxial growth, role of point defects and extended defects, impurity incorporation and doping, heterojunctions, surface physics, optical properties, degradation mechanisms, metal contacts, and oxidation of SiC.

Organizers:

Michael R. Melloch
Purdue University
School of Electrical and Computer Engineering
West Lafayette, IN 47907-1285
phone: (317) 494-3528
fax: (317) 494-6441
email: melloch@ecn.purdue.edu

Maria C. Tamargo
City College, New York - CUNY
Department of Chemistry
Convent Avenue & 138th St
New York, NY 10031
phone: (212) 650-6147
fax: (212) 650-6848
email: tamar@scisun.sci.ccny.cuny.edu

Chris G. Van de Walle
15(I) Nanometer-scale Morphology of Surfaces and Interfaces

In recent years, significant advances have been made in the synthesis of nanometer-scale morphologies using self-organized epitaxial growth and the direct fabrication of small structures using scanning probes. These sessions will focus on two primary issues: (1) the scientific understanding needed to control the production of nanometer-scale epitaxial morphologies and fabricated nanostructures, and (2) the unique physical properties of these nanostructured materials and their promise for improved electronic, magnetic, and optoelectronic devices.

Organizers:

David G. Cahill
185A CSL
Univ. of Illinois, Urbana-Champaign
1101 W. Springfield Ave.
Urbana, IL 61801
phone: (217) 333-6753
fax: (217) 244-1631
email: d-cahill@uiuc.edu

Bob Hwang
Mailstop 9162
Sandia National Labs
Livermore, CA 94551
phone: (510) 294-1570
fax: (510) 294-3231
email: rqhwang@ca.sandia.gov

Horia Metiu
Dept. of Chemistry
Univ. of California
Santa Barbara, CA 93106
phone: (805) 893-2256
fax: (805) 893-4120
email: metiu@sbmm1.ucsb.edu

David Zehner
Oak Ridge National Laboratory
15(m) Novel Scattering Techniques Applied to Materials

This session will focus on the application of novel electron, x-ray and neutron scattering techniques to determine the structure and dynamics of materials. Topics to be covered within this session will include the production and utilization of spatially limited beams, as used to scan selective regions of materials or in speckle holography when the incident beam can be made partially coherent. Abstracts are encouraged that deal with the "phase problem" and propose new solutions. Experimental innovation may include holography with a reference scatterer internal or external to the sample. New methodological or theoretical approaches to convert the information from reciprocal to direct space are also encouraged.

Organizers:
Gian P. Felcher
Material Science Division-Bldg. 223
Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439-4801
phone: (630) 252-5516
fax: (630) 252-7777
email felcher@anlpns.pns.anl.gov

Simon G. Mochrie
Center for Material Science and Engineering
MIT
77 Massachusetts Ave.
Cambridge, Ma 02139
phone: (617)253-6588
fax: (617) 258-6883
email: simon@lindy.mit.edu

15(n) Applications of Positrons to Materials Physics

These sessions will focus on areas where positrons are making unique contributions to the measurement of the electronic, surface and defect structures of solids, including polymers, pure metals, alloys, semiconductors, and composites. Topics will include Fermi surfaces, surface characterization by positron diffraction and positron annihilation induced Auger emission, electromigration in Al(Cu) interconnects in microelectronics and the identification and quantification of particular defects such as voids in polymers.
and epoxies, He clusters and defects in metals, EL2 and DX centers in GaAs, H in SiO2 on Si, epitaxial growth in ion implanted semiconductors, and structural defects at interfaces. New areas such as positron re-emission microscopy and positron diffraction holography.

Organizers:

Karl F. Canter
Brandeis University
Waltham, MA 02254
phone: (617) 736-2886
fax: (617) 736-2915
email: canter@binah.cc.brandeis.edu

Bent Nielsen
Brookhaven National Laboratory
Upton, NY 11973
phone: (516) 344-3525
fax: (516) 344-4071
email: nielsen@bnl.gov

15(o) Laser Ablation and Low-Energy Beam-Assisted Film Growth

The physical processes governing film growth by laser ablation and low-energy beams has become increasingly important in recent years. In addition to their use in depositing "conventional" oxides, semiconductors and metals, laser ablation and low-energy beams have proven useful in the formation of a wide variety of novel thin-film materials, including metastable phases, multilayers, and nanocrystallites, as well as to induce crystallographic texture in polycrystalline films. However, many fundamental issues remain unresolved, including the role of energetic species in laser ablation, the formation of particulates in the ablation plume, and the mechanism(s) by which low energy beams induce biaxial texture in polycrystalline films. Developing a fundamental understanding of these and related effects in the formation of thin-film phases, defect structures, and crystallographic textures, is important to the development of this field.

Organizers:

David Norton
Oak Ridge National Laboratory
P. O. Box 2008, Bldg 3150
Oak Ridge, TN 37831-6056
phone: (423) 574-5965
fax: (423) 576-3676
email: ntn@ornl.gov

Chris Rouleau
15(p) Battery Materials: Structural and Interfacial Aspects

Modern batteries present many challenging problems related to physics. These sessions will focus on the structural and interfacial aspects of battery materials with emphasis on lithium and metal hydride batteries. The scope of the sessions includes theoretical studies of hydrogen insertion and intercalation compounds, the synthesis of new materials, the application of in-situ spectroscopies in electrochemical cells to the study of electrode reactions, interfacial processes and degradation mechanisms. Abstracts on fundamental studies of the electrode/electrolyte interface on model systems such as single crystals are also solicited.

Organizers:

James McBreen
Department of Applied Science
Building 480
Brookhaven National Laboratory
Upton, NY 11973
phone: (516) 344-4513
fax: (516) 344-4071
e-mail: mcbreen@bnlar.msos.bnl.gov
15(q) Novel Materials for Thermoelectrics

Sessions will be focused on recent advances in materials physics of both traditional thermoelectrics and new materials including Bi compounds, superlattice structures, organic polymers and skutterudites. Abstracts are solicited in areas of experimental synthesis, physical characterization, and fundamental measurements such as energy gaps and optical properties. Theoretical studies of electronic structure, phonon modes and other properties important for improving thermoelectric applications will be included. We are particularly interested in new approaches to defining structure-property relationships that will lead to improved control and synthesis of novel thermoelectric materials.

Organizers:

Jack E. Rowe
Physics Department
NC State University
Raleigh, NC 27695-8202
phone: (919) 549-4332
fax: (919) 549-4310,
email: jrowe@aro.ncren.net

Gerald D. Mahan
University of Tennessee
200 S. College
Knoxville, TN 37996
phone: (423) 974-8129 or ORNL (423) 576-8675
email: gmahan@utkux.utk.edu

15(r) Clusters and Small Systems

Studies of clusters focus on size-evolutionary patterns of physical and chemical properties of materials systems. The focused sessions on "Clusters and Small Systems" will include experimental and theoretical investigations of: atomic and molecular clusters in various states and environments (gas, liquid, solid); collisions of clusters with solid and liquid surfaces; structure and dynamics of clusters on surfaces; supported clusters and small materials structures, such as nanowires and dots; passivated clusters and their
assemblies; nano-crystals and their structural, mechanical and electronic properties; physical properties of colloidal systems, and the physics of fine powders and granular materials.

Organizers:

Paul Alivisatos
University of California, Berkeley
Department of Chemistry
Berkeley, CA 94720
phone: (510) 643-7371
fax: (510) 642-6911
e-mail: alivis@cchem.berkeley.edu

U. Landman
Georgia Institute of Technology
School of Physics
Atlanta, GA 30332
phone: (404) 894-3368
fax: (404) 894-9958

15(s) Nucleation and Crystallization

This focused session concentrates on nucleation and crystallization phenomena in the most general sense. Abstracts on the very initial stages of semiconductor epitaxy are welcome, but contributions that concern quite different material systems are solicited most particularly. Included papers will emphasize recent work made possible by new experimental techniques (STM, AFM, LEEM, grazing incidence x-ray scattering, etc.), novel physical simulations, and more powerful computational methods. Controlled crystallization for a wide range of materials yields tailored properties, e.g. semi-crystalline polymers, metals, semiconductors, photographic film and even some foods such as chocolate. In other situations, suppression of crystallization is desired. This is the case for glass formation and for gas hydrates and waxes in the petroleum industry. This session is intended to bring together workers with very different backgrounds who find themselves confronted with the problem of understanding and controlling nucleation and crystallization. The organizers solicit contributions from diverse areas to fully illustrate the broad range of subject matter germane to these areas.

Organizers:

Hubert E. King, Jr.
Corporate Research Science Laboratories
Exxon Research and Engineering Co.
Annandale, NJ 08801
Voice: (908) 730-2888
FAX: (908) 730-3042
15(t) Nanoscale Tribology

The interplay between the atomic-scale structure of surfaces and their tribological properties is the subject of this focused session. Nanoscale tribology is a relatively new area in materials sciences that is experiencing great development thanks to the advent of scanning force microscopy probes, the surface forces apparatus, the quartz microbalance and their combinations with a variety of spectroscopic tools. With these tools the forces of friction, viscosity and adhesion can be measured with near atomic-scale resolution. These developments are paralleled by advances in the theory and in the computational modeling and simulations.

Abstracts are solicited that emphasize atomistic aspects of tribology, both in the experimental and the theoretical areas, stick-slip behavior, energy dissipation, role of adsorbed atoms and molecules etc.

Organizers:

Miquel Salmeron
Materials Science Division
Lawrence Berkeley National Laboratory
Berkeley, CA 94720
Fax: (510)-4864995
e-mail: salmeron@stm.lbl.gov

Jeffrey Sokoloff
Physics Department
Northeastern University
Boston MA 02115
Fax (617)-4352943
e-mail 3630JBS@neu.edu

15(u) Intelligent Materials and Systems

Intelligent materials and systems have received increasing attention during the last years. These materials have the ability to perform both sensing and actuating functions.
Passively intelligent materials respond to changes in the environment in a useful manner without assistance, whereas, actively intelligent materials have the ability to learn from the environment and hence to optimize their functions. Experimental and theoretical papers on all aspects of intelligent materials and systems are solicited. Possible topics include piezoelectric and electrostrictive ceramics, electrorheological fluids, magnetorheological fluids, shape memory materials, intelligent optics, intelligent gels, and other adaptive materials. The focused session will provide a broad forum on recent advances in physical mechanism, technology, properties, structure, and applications of intelligent materials and systems.

Organizers:

R. Tao
Department of Physics
Southern Illinois University at Carbondale
Carbondale, IL 62901-4401
Phone: (618) 536 2117
Fax: (618) 453 1056
E-mail: ga3756@siucvmb.siu.edu

John Ginder
Research Laboratory
Ford Motor Company
P.O.Box 2053, M.D. 3028
Dearborn, MI 48121-2053
Phone: (313)390-2292
Fax: (313) 594-6863
E-mail: jginder@ford.com

15(v) Dislocations in Deformed Metals and Semiconductor Thin Films and Multilayers

Abstracts are sought in theory and experiments associated with two general subjects: (1) Formation of partially ordered dislocation structures in deformed metals and the work hardening associated with these structures. (2) Dislocation processes in semiconductor thin films or multilayers, including dislocation generation from sources and misfit dislocation formation during and after growth.

Organizers:

For dislocations in metals:
Lyle Levine
Washington State University
Mailing address:
Metallurgy Division
Room B261 Matls. Bldg.
NIST
Gaithersburg, MD 20899
phone: (301) 975-6032
fax: (301) 926-7975
email: lel@jeeves.nist.gov

Robb Thomson
Materials Science and Engineering Laboratory
Room B307 Matls. Bldg.
NIST
Gaithersburg, MD 20899
phone: (301) 975-5665
fax: (301) 926-8349
email: robb@phlogiston.nist.gov

For dislocations in semiconductor films and multilayers:
Huajian Gao
Division of Applied Mechanics
Durand Hall 267
Stanford University
Palo Alto, CA 94305-4040
phone: (415) 725-2560
fax: (415) 723-1778
email: gao@Am-Sun2.stanford.edu

GENERAL SESSIONS:
16(a) Hydrogen in Metals
16(b) Radiation Effects
16(c) Defect Structure
16(d) Mechanical Behavior
16(e) Diffusion in Solids
16(f) Amorphous and nanocrystalline materials
16(g) Materials research at high pressure
16(h) Conducting polymers
16(i) Other

EXECUTIVE COMMITTEE
- Division of Materials Physics 1996-97

G. Slade Cargill III, Chair
Columbia UniversityNew York, NY 10027
500 W. 120th St.
Tel: (212) 854-6167
FAX: (212) 854-6278
Email: GSC15@columbia.edu

James B. Roberto, Chair Elect
MS6030 Solid State Division
Oak Ridge National Laboratory
P.O. Box 2008
Oak Ridge, TN 37831
Tel: (423) 576-0227
FAX: (423) 574-4143
Email: robertojb@ornl.gov

James W. Davenport, Vice Chair
Department of Applied Science, Bldg. 179A
Brookhaven National Lab
Tel: (516) 344-3789
FAX: (516) 344-4130
Email: Daven@bnl.gov

Samuel D. Bader, Secretary/Treasurer (1996-99)
Materials Science Division, Bldg. 223
Argonne National Laboratory
9600 S. Cass Ave.
Argonne, IL 60439
Tel: (630) 252-4960
FAX: (630) 252-9595
Email: bader@anl.gov

Howard K. Birnbaum, Councillor (1996-2000)
Department of Metallurgy
University of Illinois
1304 West Green St.
Urbana, IL 61801
Tel: (217) 333-1370
FAX: (217) 244-2278
Email: Birnbaum@uiirl7.mrl.uiuc.edu

J. Murray Gibson, Past Chair
Department of Materials Science
University of Illinois
1304 West Green St.
Urbana, IL 61801
Tel: (217) 3333-2997
FAX: (217) 244-2278
Email: j-gibson@uiuc.edu
Members at Large
Lynn E. Rehn (1994-97)
Materials Science Division, Bldg. 223
Argonne National Laboratory
9600 S. Cass Ave.
Argonne, IL 60439
Tel: (630) 252-5021
FAX: (630) 252-4798
Email: Lynn_Rehn@QMGATE.ANL.GOV

Andrew Zangwill (1994-97)
School of Physics
Georgia Institute of Technology
Atlanta, GA 30332
Tel: (404) 894-7333
FAX: (404) 894-9958
Email: Zangwill@zang1.physics.gatech.edu

Patricia Mooney (1995-98)
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598
Tel: (914) 945-3445
FAX: (914) 945-4581
Email: mooney@watson.ibm.com

Frances Hellman (1995-98)
Department of Physics 0319
University of California-San Diego
9500 Gilman Drive
LaJolla, CA 92039
Tel: (619) 534-5533
FAX: (619) 534-0174
Email: fhellman@ucsd.edu

Shirley Chiang (1996-99)
Department of Physics
University of California-Davis
Davis, Ca 95616
Tel: (916) 752-8538
FAX: (916) 752-4717
Email: chiang@physics.ucdavis.edu

Robert B. Laibowitz (1996-99)
IBM T.J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598
Tel: (914) 945-2166
FAX: (914) 945-2141
Email: laibow@watson.ibm.com

David Long Price (1996-99)
Materials Science Division, Bldg. 223
Argonne National Laboratory
Argonne, IL 60439
Tel: (630) 252-5475
FAX: (630) 252-7777
Email: price@anlns.pns.anl.gov