In this Issue

FEATURES
NSF Physics Frontiers Center
 Center For the Physics of Living Cells 2

PRL HIGHLIGHTS ... 5

PRE HIGHLIGHTS ... 13

Employment Opportunities 20
 (Faculty Recruitments and Post-Doctoral Fellowships)

Conference/Meetings Announcements 22

This is the August issue. You did not miss the June issue. Due to some technical and timing issues, I did not prepare a June issue. This issue includes the PRL/PRE highlights for both the June and August issues. In addition, we continue with our overviews of federal programs and interviews with program directors who oversee biological physics research initiatives. In this issue, Dr. Yodh describes the Center for the Physics of Living Cells at UIUC.

– CS
Continuing with our theme (over the course of the next few issues) to highlight program directors at major federal funding agencies that oversee programs directly and/or indirectly involved in biological physics research, and on-going large-scale programs sponsored by these federal programs, this issue highlights the NSF Physics Frontiers Center, the Center for the Physics of Living Cells at the University of Illinois, Urbana-Champaign.

The Center for the Physics of Living Cells
University of Illinois at Urbana-Champaign

www.cplc.illinois.edu

by Jaya Yodh, PhD

The Center for the Physics of Living Cells (CPLC) at the University of Illinois at Urbana-Champaign was established in 2008 as one of nine NSF Physics Frontier Centers (PFCs), and the second PFC focusing on biological physics. Under the co-direction of Taekjip Ha and Klaus Schulten, the CPLC is making transformational advances at the scientific boundary of the ‘physics of living cells.’ The Center’s aspiration is to create an experimentally-based, dynamic portrait of the living cell at the ultimate resolution. The CPLC comprises investigators in the fields of physics, chemistry, biochemistry, microbiology, and electrical engineering and is uniquely poised to tackle the major challenges of this field by pioneering the creation of synergies between different approaches such as single-molecule and live-cell experimental techniques and biological computation and theory. To illustrate the success of this synergistic, interdisciplinary approach, we will highlight three recently published efforts from our Center.

Bacterial Treadmills to study chemotaxis. Many bacteria, such as *E. coli*, propel themselves in water using rotating helical tails called flagella. They sense chemicals in their surroundings and alter their swimming behavior in order to move toward favorable environments (and away from unfavorable ones) in a phenomenon called chemotaxis. Bacterial chemotaxis serves as a model for the way all living cells capture and process signals from their environment, and modulate their behavior based on those signals. The laboratories of CPLC faculty, Yann Chemla and Ido Golding, have recently developed a new method to study this process (*Nature Methods* 6 (11):831-835, 2009). Using optical “tweezers”, or focused laser light, they immobilized individual *E. coli* cells in water without impeding their swimming motion. In essence, this generated a “bacterial treadmill” in which a cell swims but remains in place. The cells are trapped in a microfluidic chamber, allowing introduction of chemical signals in a controlled environment and observation of how bacteria alter their swimming response. Swimming behavior is tracked by following changes in the laser light path caused by bacterial motion and imaging fluorescently labeled cells and their flagella. This technique allowed the team to follow bacterial swimming over long durations and with a resolution hitherto unachievable. New and previously unanswerable questions can be addressed now such as whether bacteria swim with preferred spatial and directional orientations.

Calibrating In Vivo Tension Sensors. It has become increasingly clear that the tension across proteins can control the cellular fate but until recently it had not been possible to determine the tension applied across a protein *in vivo*. The group of Martin Schwartz at University of Virginia...
developed an in vivo tension sensor where a protein motif from a spider silk protein is labeled with two genetically encoded proteins of different colors at the two ends. By inserting this sensor in the middle of a protein called vinculin, they were able to show that a change in tension across the vinculin protein can be detected as a change in fluorescence resonance energy transfer (FRET) between the two fluorescent proteins. The groups of Taekjip Ha and Steve Sligar designed a scheme to calibrate the tension sensor. By using the single molecule fluorescence-force spectroscopy instrument developed in the Ha group (Hohng et al, Science, 318, 279-283, 2007), CPLC students Michael Brenner and Ruobo Zhou built a precise mapping between the FRET efficiency and force. They found that the tension sensor is most sensitive to the force range 1-5 pN. Combined with cellular FRET imaging, the vinculin protein of a migrating cell is under about 2.5 pN of force (Grashoff et al, Nature, 466, 263-266, 2010).

Insights into the Ribosome Revealed through the Computational Microscope. The translation of genetic information into proteins is essential for life. At the core of this process lies the ribosome, a quintessential large (2.5-4.5 MDa) molecular machine responsible for translating genetic material into functional proteins. In spite of challenges presented by its sheer size and complexity, several X-ray atomic resolution structures of the ribosome have been determined (2009 Nobel Prize in Chemistry). However up until recently, these structures remained elusive for factor-bound ribosomes. Moreover, X-ray crystallography does not resolve the multitude of conformations these structures can assume, which is critical for understanding the dynamics of translation and the conformational changes undergone by the ribosome. In contrast, cryo-electron microscopy (cryo-EM) produces three-dimensional density maps of ribosomes at medium resolution and thus can capture the ribosome in different conformational states. However, these maps don't reach atomic resolution, needed to understand the function of the ribosome in detail along its functional cycle.

To solve this problem, Klaus Schulten and colleagues applied their pioneering technique, molecular dynamics flexible fitting (MDFF), which morphs or flexibly fits atomic-resolution X-ray crystal structures into cryo-EM maps using molecular dynamic simulations – to obtain high-resolution structures of the E. coli ribosome in different functional states imaged by cryo-EM. In a collaboration with Joachim Frank of Columbia University (Gumbart et.al., (2009) Structure, 17: 1453-1464), MDFF revealed how the ribosome works with Elongation Factor EF-TU to recognize transfer RNA (tRNA). This is a critical interaction in protein synthesis since the ribosome must bind the specific tRNA that carries the correct amino acid to be incorporated into the growing polypeptide chain. Their MDFF structures revealed that upon ribosome recognition of the correct tRNA, the bound EF-TU undergoes a conformational change in which a key hydrophobic gate region swings open to allow subsequent steps in the translational elongation cycle to take place. The Schulten group has applied MDFF to resolve many other conformational states of the ribosome in combination with other interaction partners, ultimately leading to an elucidation of structural and functional dynamics of this essential machine.

Training and Outreach. Currently, the CPLC encompasses 13 faculty (Professors Taekjip Ha, Klaus Schulten, Paul Selvin, Yann Chemla, Alek Aksimentiev, Martin Gruebele, Zan Luthey-Schulten, Nigel Goldenfeld, Karin Dahmen, Steve Sligar, and Carle Woese from the University of Illinois, Ido Golding from Baylor College of Medicine, and Greg Timp from University of Notre Dame) as well as approximately one hundred graduate students and postdoctoral fellows. One of the key features of CPLC training is that students and postdoctoral fellows are required to work on a joint project between two laboratories/advisors, thus catalyzing new collaborative research directions and technical advances to investigate the physics of living systems.

A broader aspect of CPLC training involves participation of our students and postdoctoral
fellows as teaching assistants in the annual Physics of Living Cells Summer School (www.cplc.illinois.edu/summerschool). The week-long Summer School provides hands-on, on-site training in the latest single-molecule, live-cell experimental and computational biophysical tools and is open nationwide and internationally to senior

undergraduates, graduate students, postdoctoral fellows, and researchers in chemical and life sciences, biophysics, physics and engineering. The 2009 Summer School trained 20 students in six different advanced modules focusing on single-molecule fluorescence, optical trapping, fast relaxation imaging, single event detection in living cells, and computational biophysics. This year, the 2010 Summer School has doubled in size (37 students and 11 training modules) indicative of its growing relevance to the scientific community. The unique opportunity provided by our Summer School is reflected in the following testimonial from a student in our 2009 program, "Teaming up with researchers from all over the world, I feel the excitement of exploring the molecular world of biological systems every day. Most importantly, the hands-on experience I gained from this summer school is priceless."

The CPLC has recently established an outreach program with the Campus Middle School for Girls in Urbana, Illinois to integrate Visual Molecular Dynamics (VMD), a computational visualization tool developed by Klaus Schulten, and complementary experimental labs into 7nth grade science curriculum – also involving instruction by Center graduate students. The Center also sponsors new research collaborations via its Visiting Scientist Program, and actively recruits new graduate students and postdoctoral fellows through CPLC fellowship programs. If you would like more information about training and research at the CPLC, contact Jaya Yodh, Director of Education and Outreach at 217-244-1155, jyodh@illinois.edu.
Soft Matter, Biological, & Inter-disciplinary Physics Articles from Physical Review Letters

2 April 2010
Volume 104, Number 13, Articles (13xxxx)
http://prl.aps.org/toc/PRL/v104/i13

Effect of Surface Freezing on Meniscus Relaxation in Side Chain Comb Polymers
Shishir Prasad, Zhang Jiang, Michael Sprung, Sunil K. Sinha, and Ali Dhinojwala
Published 30 March 2010 // 137801

Generalized Einstein or Green-Kubo Relations for Active Biomolecular Transport
Udo Seifert
Published 30 March 2010 // 138101

Benjamin Rotenberg, Mathieu Salanne, Christian Simon, and Rodolphe Vuilleumier
Published 30 March 2010 // 138301

Colloidal Motility and Pattern Formation under Rectified Diffusiophoresis
Jérémie Palacci, Benjamin Abécassis, Cécile Cottin-Bizonne, Christophe Ybert, and Lydéric Bocquet
Published 1 April 2010 // 138302

9 April 2010
Volume 104, Number 14, Articles (14xxxx)
http://prl.aps.org/toc/PRL/v104/i14

Fruit Flies Modulate Passive Wing Pitching to Generate In-Flight Turns
Attila J. Bergou, Leif Ristroph, John Guckenheimer, Itai Cohen, and Z. Jane Wang
Published 5 April 2010 // 148101

DNA Condensation at Freestanding Cationic Lipid Bilayers
C. Herold, P. Schwille, and E. P. Petrov
Published 5 April 2010 // 148102

Macroscopic Kinetic Effect of Cell-to-Cell Variation in Biochemical Reactions
Pan-Jun Kim and Nathan D. Price
Published 8 April 2010 // 148103

Nucleation of Ordered Phases in Block Copolymers
Xiuyuan Cheng, Ling Lin, Weinan E, Pingwen Zhang, and An-Chang Shi
Published 9 April 2010 // 148301

16 April 2010
Volume 104, Number 15, Articles (15xxxx)
http://prl.aps.org/toc/PRL/v104/i15

Thermodynamically Stable Blue Phases
F. Castles, S. M. Morris, E. M. Terentjev, and H. J. Coles
Published 13 April 2010 // 157801

Surface Instability Driven by Dipole-Dipole Interactions in a Granular Layer
Daniel Lopez and François Pétréis
Published 12 April 2010 // 158001

Helix-Coil Kinetics of Individual Polyadenylic Acid Molecules in a Protein Channel
Jianxun Lin, Anatoly Kolomeisky, and Amit Meller
Published 15 April 2010 // 158101

Retinal Glial Cells Enhance Human Vision Acuity
A. M. Labin and E. N. Ribak
Published 16 April 2010 // 158102

Transient Localized Patterns in Noise-Driven Reaction-Diffusion Systems
Inbal Hecht, David A. Kessler, and Herbert Levine
Published 14 April 2010 // 158301

Light-Harvesting Mechanism of Bacteria Exploits a Critical Interplay between the Dynamics of Transport and Trapping
Felipe Caycedo-Soler, Ferney J. Rodriguez, Luis Quiroga, and Neil F. Johnson
Published 16 April 2010 // 158302
Multiple-Time Scaling and Universal Behavior of the Earthquake Interevent Time Distribution
M. Bottiglieri, L. de Arcangelis, C. Godano, and E. Lippiello
Published 15 April 2010 // 158501

23 April 2010
Volume 104, Number 16, Articles (16xxx)
http://prl.aps.org/toc/PRL/v104/i16

Chaotic Dynamics of Red Blood Cells in a Sinusoidal Flow
Jules Dupire, Manouk Abkarian, and Annie Viallat
Published 21 April 2010 // 168101

Collective Escape of Chemotactic Swimmers through Microscopic Ratchets
Guillaume Lambert, David Liao, and Robert H. Austin
Published 22 April 2010 // 168102

Charge Reversal in Anionic Liposomes: Experimental Demonstration and Molecular Origin
Alberto Martín-Molina, César Rodríguez-Beas, and Jordi Faraldo
Published 23 April 2010 // 168103

Cell Migration Driven by Cooperative Substrate Deformation Patterns
Thomas E. Angelini, Edouard Hannezo, Xavier Trepat, Jeffrey J. Fredberg, and David A. Weitz
Published 23 April 2010 // 168104

Phase Diagram of α-Helical and β-Sheet Forming Peptides
Stefan Auer and Dimo Kashchiev
Published 23 April 2010 // 168105

Microdynamics and Criticality of Adaptive Regulatory Networks
Ben D. MacArthur, Rubén J. Sánchez-García, and Avi Ma’ayan
Published 19 April 2010 // 168701

30 April 2010
Volume 104, Number 17, Articles (17xxx)
http://prl.aps.org/toc/PRL/v104/i17

Analysis of Entanglement Length and Segmental Order Parameter in Polymer Networks
M. Lang and J.-U. Sommer
Published 26 April 2010 // 177801

DNA Nanotweezers Studied with a Coarse-Grained Model of DNA
Thomas E. Ouldridge, Ard A. Louis, and Jonathan P. K. Doye
Published 26 April 2010 // 178101

Ostwald Ripening of Clusters during Protein Crystallization
Aaron M. Streets and Stephen R. Quake
Published 26 April 2010 // 178102

Synchronization and Collective Dynamics in a Carpet of Microfluidic Rotors
Nariya Uchida and Ramin Golestanian
Published 26 April 2010 // 178103

Multiple Pilus Motors Cooperate for Persistent Bacterial Movement in Two Dimensions
Claudia Holz, Dirk Opitz, Lilo Greune, Rainer Kurre, Michael Koomey, M. Alexander Schmidt, and Berenike Maier
Published 28 April 2010 // 178104

Novel Mechanism for Temperature-Independent Transitions in Flexible Molecules: Role of Thermodynamic Fluctuations
V. I. Teslenko, E. G. Petrov, A. Verkhratsky, and O. A. Krishtal
Published 29 April 2010 // 178105

Determination of Photoswitching Dynamics through Chiral Mapping of Single Molecules Using a Scanning Tunneling Microscope
Matthew J. Comstock, David A. Strubbe, Luis Berbil-Bautista, Niv Levy, Jongweon Cho, Daniel Poulsen, Jean M. J. Fréchet, Steven G. Louie, and Michael F. Crommie
Published 28 April 2010 // 178301

Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation
Xuanhe Zhao and Zhigang Suo
Published 30 April 2010 // 178302

Elastic Turbulence in Shear Banding Wormlike Micelles
M. A. Fardin, D. Lopez, J. Croso, G. Grégoire, O. Cardoso, G. H. McKinley, and S. Lerouge
Published 30 April 2010 // 178303
7 May 2010
Volume 104, Number 18, Articles (18xxxx)
http://prl.aps.org/toc/PRL/v104/i18

Inertial Lubrication Theory
N. O. Rojas, M. Argentina, E. Cerda, and E. Tirapegui
Published 7 May 2010 // 187801

Effects of Gas Flow on Granular Size Separation
Chuanping Liu, Li Wang, Ping Wu, and Min Jia
Published 3 May 2010 // 188002

Onset Mechanism for Granular Axial Band Formation in Rotating Tumblers
Pengfei Chen, Julio M. Ottino, and Richard M. Lueptow
Published 3 May 2010 // 188002

Second Order Catalytic Quasispecies Yields Discontinuous Mean Fitness at Error Threshold
Nathaniel Wagner, Emmanuel Tannenbaum, and Gonen Ashkenasy
Published 6 May 2010 // 188101

Thermal Trap for DNA Replication
Christof B. Mast and Dieter Braun
Published 7 May 2010 // 188102

Statistical Mechanics of Compressed Sensing
Surya Ganguli and Haim Sompolinsky
Published 7 May 2010 // 188701

14 May 2010
Volume 104, Number 19, Articles (19xxxx)
http://prl.aps.org/toc/PRL/v104/i19

Nonequilibrium Energetics of a Single F1-ATPase Molecule
Shoichi Toyabe, Tetsuaki Okamoto, Takahiro Watanabe-Nakayama, Hiroshi Taketani, Seishi Kudo, and Eiro Muneyuki
Published 14 May 2010 // 198103

Hydrodynamics of Liquids of Chiral Molecules and Suspensions Containing Chiral Particles
A. V. Andreev, D. T. Son, and B. Spivak
Published 10 May 2010 // 198301

Conformational Phase Diagram for Polymers Adsorbed on Ultrathin Nanowires
Thomas Vogel and Michael Bachmann
Published 11 May 2010 // 198302

Viscoelastic Taylor-Couette Instability of Shear Banded Flow
Suzanne M. Fielding
Published 11 May 2010 // 198303

Molecular Dynamics Simulation of the α-Helix to β-Sheet Transition in Coiled Protein Filaments: Evidence for a Critical Filament Length Scale
Zhao Qin and Markus J. Buehler
Published 12 May 2010 // 198304

NMR Observation of Entangled Polymer Dynamics: Tube Model Predictions and Constraint Release
Fabián Vaca Chávez and Kay Saalwächter
Published 12 May 2010 // 198305

21 May 2010
Volume 104, Number 20, Articles (20xxxx)
http://prl.aps.org/toc/PRL/v104/i20

Time-Dependent Orientation Coupling in Equilibrium Polymer Melts
Jing Cao and Alexei E. Likhtman
Published 20 May 2010 // 207801

Streaming Instability in Growing Cell Populations
William Mather, Octavio Mondragón-Palomino, Tal Danino, Jeff Hasty, and Lev S. Tsimring
Published 19 May 2010 // 208101

Image Scanning Microscopy
Claus B. Müller and Jörg Enderlein
Published 10 May 2010 // 198101

Membrane Mediated Sorting
Timon Idema, Stefan Semrau, Cornelis Storm, and Thomas Schmidt
Published 13 May 2010 // 198102

Direct Observation of Confined Single Chain Dynamics by Neutron Scattering
Published 11 May 2010 // 197801

Statistical Mechanics of Compressed Sensing
Surya Ganguli and Haim Sompolinsky
Published 7 May 2010 // 188701
Transient Shear Banding in a Simple Yield Stress Fluid
Thibaut Divoux, David Tamarit, Catherine Barentin, and Sébastien Manneville
Published 18 May 2010 // 208301

Photoexfoliation of Graphene from Graphite: An Ab Initio Study
Yoshiyuki Miyamoto, Hong Zhang, and David Tománek
Published 20 May 2010 // 208302

Thermal Conductivity of Periclase (MgO) from First Principles
Stephen Stackhouse, Lars Stixrude, and Bijaya B. Karki
Published 17 May 2010 // 208501

28 May 2010
Volume 104, Number 21, Articles (21xxxx)
http://prl.aps.org/toc/PRL/v104/i21

Morphology Scaling of Drop Impact onto a Granular Layer
Hiroaki Katsuragi
Published 28 May 2010 // 218001

Aspiration of Biological Viscoelastic Drops
Karina Guevorkian, Marie-Josée Colbert, Mélanie Durth, Sylvie Dufour, and Françoise Brochard-Wyart
Published 24 May 2010 // 218101

Entropy Production of Cyclic Population Dynamics
Benjamin Andrae, Jonas Cremer, Tobias Reichenbach, and Erwin Frey
Published 25 May 2010 // 218102

Fluctuation Theorem Applied to F1-ATPase
Kumiko Hayashi, Hiroshi Ueno, Ryota Iino, and Hiroyuki Noji
Published 28 May 2010 // 218103

Defects and DNA Replication
Michel G. Gauthier, John Herrick, and John Bechhoefer
Published 28 May 2010 // 218104

Active and Hibernating Turbulence in Minimal Channel Flow of Newtonian and Polymeric Fluids
Li Xi and Michael D. Graham
Published 24 May 2010 // 218301

Nonlinear Rheology of a Nanoconfined Simple Fluid
Lionel Bureau
Published 25 May 2010 // 218302

Field-Induced Alignment of Flexible Polyelectrolytes in Solution
Tak Shing Lo, Boris Khusid, and Joel Koplik
Published 26 May 2010 // 218303

Cyclone-Anticyclone Asymmetry in Geophysical Turbulence
Guillaume Roulet and Patrice Klein
Published 25 May 2010 // 218501

Turbulence During the Generation of Internal Tide on a Critical Slope
Bishakhdatta Gayen and Sutanu Sarkar
Published 27 May 2010 // 218502

Critical Fluctuations in Spatial Complex Networks
Serena Bradde, Fabio Caccioli, Luca Dall’Asta, and Ginestra Bianconi
Published 26 May 2010 // 218701

4 June 2010
Volume 104, Number 22, Articles (22xxxx)
http://prl.aps.org/toc/PRL/v104/i22

Coalescence Driven by Line Tension in Thin Nematic Films
U. Delabre and A-M. Cazabat
Published 3 June 2010 // 227801

Critical Field Strength in an Electroclinic Liquid Crystal Elastomer
Christopher M. Spillmann, Amit V. Kapur, Frank W. Bentrem, Jawad Naciri, and Banahalli R. Ratna
Published 4 June 2010 // 227802

Frequency Factors in a Landscape Model of Filamentous Protein Aggregation
Alexander K. Buell, Jamie R. Blundell, Christopher M. Dobson, Mark E. Welland, Eugene M. Terentjev, and Tuomas P. J. Knowles
Published 1 June 2010 // 228101
Dendritic Actin Filament Nucleation Causes Traveling Waves and Patches
Anders E. Carlsson
Published 1 June 2010 // 228102

Torsional Network Model: Normal Modes in Torsion Angle Space Better Correlate with Conformation Changes in Proteins
Raul Mendez and Ugo Bastolla
Published 3 June 2010 // 228103

Implementation of Dynamic Bayesian Decision Making by Intracellular Kinetics
Tetsuya J. Kobayashi
Published 3 June 2010 // 228104

Importance of Charge Regulation in Attractive Double-Layer Forces between Dissimilar Surfaces
Ionel Popa, Prashant Sinha, Marco Finessi, Plinio Maroni, Georg Papastavrou, and Michal Borkovec
Published 2 June 2010 // 228301

11 June 2010
Volume 104, Number 23, Articles (23xxxx)
http://prl.aps.org/toc/PRL/v104/i23

Unjamming Dynamics: The Micromechanics of a Seismic Fault Model
Massimo Pica Ciamarra, Eugenio Lippiello, Cataldo Godano, and Lucilla de Arcangelis
Published 9 June 2010 // 238001

Pressure Independence of Granular Flow through an Aperture
M. A. Aguirre, J. G. Grande, A. Calvo, L. A. Pugnaloni, and J.-C. Géminard
Published 11 June 2010 // 238002

Biased Transport of Elastic Cytoskeletal Filaments with Alternating Polarities by Molecular Motors
Barak Gur and Oded Farago
Published 7 June 2010 // 238101

Bacterial Chromosomal Loci Move Subdiffusively through a Viscoelastic Cytoplasm
Stephanie C. Weber, Andrew J. Spakowitz, and Julie A. Theriot
Published 8 June 2010 // 238102

Base-By-Base Ratcheting of Single Stranded DNA through a Solid-State Nanopore
Binquan Luan, Hongbo Peng, Stas Polonsky, Steve Rossnagel, Gustavo Stolovitzky, and Glenn Martyna
Published 10 June 2010 // 238103

Statistical Mechanics of Developable Ribbons
L. Giomi and L. Mahadevan
Published 11 June 2010 // 238104

Observations of Random Walk of the Ground in Space and Time
Vladimir Shiltsev
Published 7 June 2010 // 238501

18 June 2010
Volume 104, Number 24, Articles (24xxxx)
http://prl.aps.org/toc/PRL/v104/i24

Experimental Realization of a Rotational Ratchet in a Granular Gas
Peter Eshuis, Ko van der Weele, Detlef Lohse, and Devaraj van der Meer
Published 16 June 2010 // 248001

Limits of Sensing Temporal Concentration Changes by Single Cells
Thierry Mora and Ned S. Wingreen
Published 14 June 2010 // 248101

Dynamic Instabilities in Assemblies of Molecular Motors with Finite Stiffness
T. Guérin, J. Prost, and J.-F. Joanny
Published 16 June 2010 // 248102

Small Surface Pretilt Strikingly Affects the Director Profile during Poiseuille Flow of a Nematic Liquid Crystal
C. J. Holmes, S. L. Cornford, and J. R. Sambles
Published 14 June 2010 // 248301

Long-Range Dynamic Correlations in Confined Suspensions
Derek Frydel and Haim Diamant
Published 17 June 2010 // 248302

Interfacially Driven Instability in the Microchannel Flow of a Shear-Banding Fluid
P. Nghe, S. M. Fielding, P. Tabeling, and A. Ajdari
Published 17 June 2010 // 248303
Coarsening Foams Robustly Reach a Self-Similar Growth Regime
Jérôme Lambert, Rajmund Mokso, Isabelle Cantat, Peter Cloetens, James A. Glazier, François Graner, and Renaud Delannay
Published 18 June 2010 // 248304

Density of States of Colloidal Glasses
Antina Ghosh, Vijayakumar K. Chikkadi, Peter Schall, Jorge Kurchan, and Daniel Bonn
Published 18 June 2010
248305

25 June 2010
Volume 104, Number 25, Articles (25xxxx)
http://prl.aps.org/toc/PRL/v104/i25

Mechanically Generated Surface Chirality at the Nanoscale
Sameh Ferjani, Yoonseuk Choi, Joel Pendery, Rolfe G. Petschek, and Charles Rosenblatt
Published 24 June 2010 // 257801

Power of the Poincaré Group: Elucidating the Hidden Symmetries in Focal Conic Domains
Gareth P. Alexander, Bryan Gin-ge Chen, Elisabetta A. Matsumoto, and Randall D. Kamien
Published 24 June 2010 // 257802

Run-and-Tumble Particles with Hydrodynamics: Sedimentation, Trapping, and Upstream Swimming
R. W. Nash, R. Adhikari, J. Tailleur, and M. E. Cates
Published 22 June 2010 // 258101

Self-Limited Self-Assembly of Chiral Filaments
Yasheng Yang, Robert B. Meyer, and Michael F. Hagan
Published 22 June 2010 // 258102

Protein-Mediated DNA Loop Formation and Breakdown in a Fluctuating Environment
Yih-Fan Chen, J. N. Milstein, and Jens-Christian Meiners
Published 24 June 2010 // 258103

Epidemic Threshold for the Susceptible-Infectious-Susceptible Model on Random Networks
Roni Parshani, Shai Carmi, and Shlomo Havlin
Published 22 June 2010 // 258701

2 July 2010
Volume 105, Number 1, Articles (01xxxx)
http://prl.aps.org/toc/PRL/v105/i1

Surface Alignment and Anchoring Transitions in Nematic Lyotropic Chromonic Liquid Crystal
Published 28 June 2010 // 017801

X-Ray Absorption Signatures of the Molecular Environment in Water and Ice
Wei Chen, Xifan Wu, and Roberto Car
Published 30 June 2010 // 017802

Post-Transcriptional Regulation of Noise in Protein Distributions during Gene Expression
Tao Jia and Rahul V. Kulkarni
Published 28 June 2010 // 018101

Anharmonic Torsional Stiffness of DNA Revealed under Small External Torques
Alexey K. Mazur
Published 29 June 2010 // 018102

Synthetic Mechanochemical Molecular Swimmer
Ramin Golestanian
Published 29 June 2010 // 018103

Hyperpolarizing Gases via Dynamic Nuclear Polarization and Sublimation
Published 1 July 2010 // 018104

Self-Organization of a Stable Pore Structure in a Phospholipid Bilayer
Kenichiro Koshiyama, Takeru Yano, and Tetsuya Kodama
Published 2 July 2010 // 018105
9 July 2010
Volume 105, Number 2, Articles (02xxxx)
http://prl.aps.org/toc/PRL/v105/i2

Raman Scattering Study of Phase Biaxiality in a Thermotropic Bent-Core Nematic Liquid Crystal
Min Sang Park, Beom-Jin Yoon, Jung Ok Park, Veena Prasad, Satyendra Kumar, and Mohan Srinivasarao
Published 8 July 2010 // 027801

Molecular Imaging of Slip in Entangled DNA Solution
Pouyan E. Boukany, Orin Hemminger, Shi-Qing Wang, and L. J. Lee
Published 9 July 2010 // 027802

Morphology, Growth, and Size Limit of Bacterial Cells
Hongyuan Jiang and Sean X. Sun
Published 7 July 2010 // 028101

Long-Range Protein Coupling Mediated by Critical Low-Energy Modes of Tubular Lipid Membranes
Sylvain Monnier, Sergei B. Rochal, Andrea Parmeggiani, and Vladimir L. Lorman
Published 8 July 2010 // 028102

16 July 2010
Volume 105, Number 3, Articles (03xxxx)
http://prl.aps.org/toc/PRL/v105/i3

Tube Width Fluctuations in F-Actin Solutions
J. Glaser, D. Chakraborty, K. Kroy, I. Lauter, M. Degawa, N. Kirchgeßner, B. Hoffmann, R. Merkel, and M. Giesen
Published 13 July 2010 // 037801

Algebraic Displacement Correlation in Two-Dimensional Polymer Melts
J. P. Wittmer, H. Meyer, A. Johner, T. Kreer, and J. Baschnagel
Published 15 July 2010 // 037802

How Water Meets a Very Hydrophobic Surface
Sudeshna Chattopadhyay, Ahmet Uysal, Benjamin Stripe, Young-geun Ha, Tobin J. Marks, Evguenia A. Karapetrova, and Pulak Dutta
Published 15 July 2010 // 037803

Thermal Fluctuation and Elasticity of Lipid Vesicles Interacting with Pore-Forming Peptides
Ji-Hwan Lee, Sung-Min Choi, Changwoo Doe, Antonio Faraone, Philip A. Pincus, and Steven R. Kline
Published 13 July 2010 // 038102

Spinodal Clustering in Thin Films of Nanoparticle-Polymer Mixtures
Him Cheng Wong and João T. Cabral
Published 12 July 2010 // 038301

Smooth Cascade of Wrinkles at the Edge of a Floating Elastic Film
Jiangshui Huang, Benny Davidovitch, Christian D. Santangelo, Thomas P. Russell, and Narayan Menon
Published 14 July 2010 // 038302

Draping Films: A Wrinkle to Fold Transition
Douglas P. Holmes and Alfred J. Crosby
Published 14 July 2010 // 038303

Hidden Geometry of Ocean Flows
Carolina Mendoza and Ana M. Mancho
Published 15 July 2010 // 038501

Centrality Scaling in Large Networks
Mária Ercsey-Ravasz and Zoltán Toroczkai
Published 16 July 2010 // 038701

23 July 2010
Volume 105, Number 4, Articles (04xxxx)
http://prl.aps.org/toc/PRL/v105/i4

Compaction Dynamics of Wet Granular Assemblies
J. E. Fiscina, G. Lumay, F. Ludewig, and N. Vandewalle
Published 19 July 2010 // 048001

Local Cochlear Correlations of Perceived Pitch
Stefan Martignoli and Ruedi Stoop
Published 20 July 2010 // 048101

Kinetics of Myosin Node Aggregation into a Contractile Ring
Nikola Ojkic and Dimitrios Vavylonis
Published 20 July 2010 // 048102
Law of Mass Action, Detailed Balance, and the Modeling of Calcium Puffs
S. Rudiger, J. W. Shuai, and I. M. Sokolov
Published 22 July 2010 // 048103

Physical Limits on Cellular Sensing of Spatial Gradients
Bo Hu, Wen Chen, Wouter-Jan Rappel, and Herbert Levine
Published 23 July 2010 // 048104

Nonlocal Desorption of Chlorobenzene Molecules from the Si(111)-(7x7) Surface by Charge Injection from the Tip of a Scanning Tunneling Microscope: Remote Control of Atomic Manipulation
P. A. Sloan, S. Sakulsermsuk, and R. E. Palmer
Published 19 July 2010 // 048301

Nonlocal Activation of a Bistable Atom through a Surface State Charge-Transfer Process on Si(100)-(2x1):H
A. Bellec, D. Riedel, G. Dujardin, O. Boudrioua, L. Chaput, L. Stauffer, and Ph. Sonnet
Published 19 July 2010 // 048302

Finite Ion-Size Effects Dominate the Interaction between Charged Colloidal Particles at an Oil-Water Interface
Kasper Masschaele, Bum Jun Park, Eric M. Furst, Jan Fransaer, and Jan Vermant
Published 21 July 2010 // 048303

Robust Existence of a Reaction Boundary to Separate the Fate of a Chemical Reaction
Shinnosuke Kawai and Tamiki Komatsuzaki
Published 21 July 2010 // 048304

Interdependent Networks: Reducing the Coupling Strength Leads to a Change from a First to Second Order Percolation Transition
Roni Parshani, Sergey V. Buldyrev, and Shlomo Havlin
Published 21 July 2010 // 048701

30 July 2010
Volume 105, Number 5, Articles (05xxxx)
http://prl.aps.org/toc/PRL/v105/i5

Information-Optimal Transcriptional Response to Oscillatory Driving
Andrew Mugler, Aleksandra M. Walczak, and Chris H. Wiggins

Published 29 July 2010 // 058101

Marginally Stable Chemical Systems as Precursors of Life
Doriano Brogioli
Published 30 July 2010 // 058102

Geometric Stability and Elastic Response of a Supported Nanoparticle Film
Brian D. Leahy, Luka Pocivavsek, Mati Meron, Kin Lok Lam, Desiree Salas, P. James Viccaro, Ka Yee C. Lee, and Binhua Lin
Published 30 July 2010 // 058301
Biological Physics Articles from
Physical Review E

April 2010
Volume 81, Number 4, Articles (04xxx)
http://pre.aps.org/toc/PRE/v81/i4

ARTICLES

Crucial roles of charged saccharide moieties in survival of gram negative bacteria against protamine revealed by combination of grazing incidence x-ray structural characterizations and Monte Carlo simulations
Rafael G. Oliveira, Emanuel Schneck, Bonnie E. Quinn, Oleg V. Konovalov, Klaus Brandenburg, Thomas Gutmann, Tom Gill, Charles B. Hanna, David A. Pink, and Motomu Tanaka
Published 2 April 2010 // 041901

Quasicontinuum Fokker-Planck equation
Francis J. Alexander and Philip Rosenau
Published 2 April 2010 // 041902

Stochastic signaling in biochemical cascades and genetic systems in genetically engineered living cells
Ramiz Daniel, Ronen Almog, and Yosi Shacham-Diamand
Published 5 April 2010 // 041903

Puff-wave transition in an inhomogeneous model for calcium signals
J. W. Shuai, Y. D. Huang, and S. R. Diger
Published 6 April 2010 // 041904

Optimizing information flow in small genetic networks. II. Feed-forward interactions
Aleksandra M. Walczak, Gasper Tkci, and William Bialek
Published 6 April 2010 // 041905

Adhesion between a rigid cylindrical particle and a soft fluid membrane tube
Jeff Z. Y. Chen and Sergey Mrkrtchyan
Published 7 April 2010 // 041906

Multivariate Granger causality and generalized variance
Adam B. Barrett, Lionel Barnett, and Anil K. Seth
Published 12 April 2010 // 041907

Effects of demographic stochasticity on biological community assembly on evolutionary time scales
Yohsuke Murase, Takashi Shimada, Nobuyasu Ito, and Per Arne Rikvold
Published 13 April 2010 // 041908

Stabilizing bipedal walking on posts through multiple constraints
Kunishige Ohgane and Kei-Ichi Ueda
Published 13 April 2010 // 041909

Nonlocal fluctuation correlations in active gels
D. A. Head and D. Mizuno
Published 13 April 2010 // 041910

Spike train statistics for consonant and dissonant musical accords in a simple auditory sensory model
Yuriy V. Ushakov, Alexander A. Dubkov, and Bernardo Spagnolo
Published 13 April 2010 // 041911

Assortative mating and mutation diffusion in spatial evolutionary systems
C. J. Paley, S. N. Taraskin, and S. R. Elliott
Published 14 April 2010 // 041912

Spontaneous oscillations, signal amplification, and synchronization in a model of active hair bundle mechanics
Lijuan Han and Alexander B. Neiman
Published 14 April 2010 // 041913

Three-dimensional structures of RNA obtained by means of knowledge-based interaction potentials
Oscar Taxilaga-Zetina, Patricia Pliego-Pastrana, and Mauricio D. Carbajal-Tinoco
Published 19 April 2010 // 041914
Architecture-dependent signal conduction in model networks of endothelial cells
Pierre A. Deymier, Mete Eray, Martin J. Deymier, Keith Runge, James B. Hoying, and Jérome O. Vasseur
Published 19 April 2010 // 041915

Twist-writhing partitioning in a coarse-grained DNA minicircle model
Mehmet Sayar, Baris Avsaroglu, and Alkan Kabakcioglu
Published 22 April 2010 // 041916

Structure-dependent wavelike energy transfer on pigment rings of individual light-harvesting-2 complexes from photosynthetic bacteria
Qian-Jin Chu and Yu-Xiang Weng
Published 22 April 2010 // 041917

Enhancing the convergence efficiency of a self-propelled agent system via a weighted model
Jianxi Gao, Zhuo Chen, Yunze Cai, and Xiaoming Xu
Published 26 April 2010 // 041918

Adhesion of multicomponent vesicle membranes
Yanxiang Zhao, Sovan Das, and Qiang Du
Published 28 April 2010 // 041919

Hydrodynamics of cell-cell mechanical signaling in the initial stages of aggregation
Roland Bouffanais and Dick K. P. Yue
Published 28 April 2010 // 041920

Synaptic filtering of rate-coded information
Matthias Merkel and Benjamin Lindner
Published 29 April 2010 // 041921

Monte Carlo simulations of fluid vesicles with in-plane orientational ordering
N. Ramakrishnan, P. B. Sunil Kumar, and John H. Ipsen
Published 29 April 2010 // 041922

Adhesive dynamics of lubricated films
Fong Yew Leong and K.-H. Chiam
Published 29 April 2010 // 041923

Reflection and attachment of spirals at obstacles for the Fitzhugh-Nagumo and Beeler-Reuter models
Daniel Olmos

Published 30 April 2010 // 041924

Assembly of viral capsids, buckling, and the Asaro-Grinfeld-Tiller instability
Alexander Yu. Morozov and Robijn F. Bruinsma
Published 30 April 2010 // 041925

May 2010
Volume 81, Number 5, Articles (05xxx)
http://pre.aps.org/toc/PRE/v81/i5

RAPID COMMUNICATIONS

Information transfer for small-amplitude signals
Lubomir Kostal and Petr Lansky
Published 18 May 2010 // 050901(R)

Fluctuation-induced attraction between adhesion sites of supported membranes
Oded Farago
Published 21 May 2010 // 050902(R)

Fluctuations of the Casimir-like force between two membrane inclusions
Anne-Florence Bitbol, Paul G. Dommersnes, and Jean-Baptiste Fournier
Published 28 May 2010 // 050903(R)

ARTICLES

Stochastic dynamics of cholera epidemics
Sandro Azaele, Amos Maritan, Enrico Bertuzzo, Ignacio Rodriguez-Iiturbe, and Andrea Rinaldo
Published 3 May 2010 // 051901

Persistence of cluster synchronization under the influence of advection
Emma Guiroy, Martin Bees, Adrian Martin, and Meric Srokosz
Published 3 May 2010 // 051902

Hysteresis and bistability in periodically paced cardiac tissue
Xiaodong Huang, Yu Qian, Xiaoming Zhang, and Gang Hu
Published 4 May 2010 // 051903

Role of the particle’s stepping cycle in an asymmetric exclusion process: A model of mRNA translation
L. Cadrini, I. Stansfield, and M. C. Romano
Published 5 May 2010 // 051904
Analytical investigation of the effects of lateral connections on the accuracy of population coding
Masafumi Oizumi, Keiji Miura, and Masato Okada
Published 5 May 2010 // 051905

Residue length and solvation model dependency of elastinlike polypeptides
Mustafa Bilsel and Handan Arkin
Published 6 May 2010 // 051906

Protein folding on rugged energy landscapes: Conformational diffusion on fractal networks
Gregg Lois, Jerzy Blawzdziewicz, and Corey S. O'Hern
Published 6 May 2010 // 051907

Sheared active fluids: Thickening, thinning, and vanishing viscosity
Luca Giomi, Tanniemola B. Liverpool, and M. Cristina Marchetti
Published 6 May 2010 // 051908

Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles
Richard J. Bingham, Peter D. Olmsted, and Stephen W. Smye
Published 7 May 2010 // 051909

Denaturation patterns in heterogeneous DNA
Marco Zoli
Published 10 May 2010 // 051910

Membrane interactions control residue fluctuations of outer membrane porins
A. B. Besya, H. Mobasher, and M. R. Ejtehadi
Published 11 May 2010 // 051911

Model of ionic currents through microtubule nanopores and the lumen
Holly Freedman, Vahid Rezania, Avner Priel, Eric Carpenter, Sergei Y. Noskov, and Jack A. Tuszyński
Published 11 May 2010 // 051912

Entropically modified spiking ability and periodicity in clustered channels
Jianwei Shuai, Rong Sheng, and Peter Jung
Published 11 May 2010 // 051913

Force-induced destabilization of focal adhesions at defined integrin spacings on nanostructured surfaces
Alex G. F. de Beer, E. Ada Cavalcanti-Adam, G. nter Majer, M. Lopez-Garcia, H. Kessler, and Joachim P. Spatz
Published 12 May 2010 // 051914

Mechanics of the power stroke in myosin II
L. Marcucci and L. Truskinovsky
Published 13 May 2010 // 051915

Recombination in one- and two-dimensional fitness landscapes
Zh. Avelisyan and David B. Saakian
Published 17 May 2010 // 051916

Eigenvalue distributions for a class of covariance matrices with application to Bienenstock-Cooper-Munro neurons under noisy conditions
Armando Bazzani, Gastone C. Castellani, and Leon N. Cooper
Published 17 May 2010 // 051917

Ionization penalty in nonlinear optical bioimaging
A. A. Voronin and A. M. Zheltikov
Published 17 May 2010 // 051918

Thermodynamics of nanospheres encapsulated in virus capsids
Antonio Siber, Roya Zandi, and Rudolf Podgornik
Published 20 May 2010 // 051919

Discreteness-induced slow relaxation in reversible catalytic reaction networks
Akinori Awazu and Kunihiko Kaneko
Published 21 May 2010 // 051920

Cooperation between giant DNA molecules and actin filaments in a microsphere
Makiko Negishi, Takahiro Sakaue, Kingo Takiguchi, and Kenichi Yoshikawa
Published 24 May 2010 // 051921

Toward an understanding of fibrin branching structure
Aaron L. Fogelson and James P. Keener
Published 24 May 2010 // 051922
Contribution of double scattering to structural coloration in quasiodered nanostructures of bird feathers
Heeso Noh, Seng Fatt Liew, Vinodkumar Saranathan, Richard O. Prum, Simon G. J. Mochrie, Eric R. Dufresne, and Hui Cao
Published 25 May 2010 // 051923

Cellular deformation and intracellular stress propagation during optical stretching
Soo-Kng Teo, Andrew B. Goryachev, Kim H. Parker, and K.-H. Chiam
Published 26 May 2010 // 051924

Speeding up disease extinction with a limited amount of vaccine
M. Khasin, M. I. Dykman, and B. Meerson
Published 27 May 2010 // 051925

Different pulling modes in DNA overstretching: A theoretical analysis
D. Marenduzzo, E. Orlandini, F. Seno, and A. Trovato
Published 27 May 2010 // 051926

BRIEF REPORTS

Self-sustained biochemical oscillations and waves with a feedback determined only by boundary conditions
E. B. Postnikov, A. Yu. Verisokin, D. V. Verveyko, and A. I. Lavrova
Published 17 May 2010 // 052901

JUNE 2010
Volume 81, Number 6, Articles (06xxxx)
http://pre.aps.org/toc/PRE/v81/i6

RAPID COMMUNICATIONS

Coexistence in a one-dimensional cyclic dominance process
Anton A. Winkler, Tobias Reichenbach, and Erwin Frey
Published 28 June 2010 // 060901(R)

ARTICLES

Scale-invariant model of marine population dynamics
José A. Capitan and Gustav W. Delius
Published 1 June 2010 // 061901

Dynamic-energy-budget-driven fruiting-body formation in myxobacteria
M. Hendrata and B. Birnir
Published 1 June 2010 // 061902

Spatial-temporal dynamics of chaotic behavior in cultured hippocampal networks
Wenjuan Chen, Xiangning Li, Jiangbo Pu, and Qingming Luo
Published 1 June 2010 // 061903

Analytical progress in the theory of vesicles under linear flow
Alexander Farutin, Thierry Biben, and Chaouqi Misbah
Published 3 June 2010 // 061904

Effect of crowding on the conformation of interwound DNA strands from neutron scattering measurements and Monte Carlo simulations
Xiaoying Zhu, Siow Yee Ng, Amar Nath Gupta, Yuan Ping Feng, Bow Ho, Alain Lapp, Stefan U. Egelhaaf, V. Trevor Forsyth, Michael Haertlein, Martine Moulin, Ralf Schweins, and Johan R. C. van der Maarel
Published 3 June 2010 // 061905

Particle-based model to simulate the micromechanics of biological cells
P. Van Liedekerke, E. Tijskens, H. Ramon, P. Ghysels, G. Samaey, and D. Roose
Published 3 June 2010 // 061906

Anharmonic oscillation effect on the Davydov-Scott monomer in a thermal bath
A. Sulaiman, F. P. Zen, H. Alatas, and L. T. Handoko
Published 3 June 2010 // 061907

Free energy and critical force for adhesion clusters
Han-Jou Lin, Hsuan-Yi Chen, Yu-Jane Sheng, and Heng-Kwong Tsao
Published 3 June 2010 // 061908

Variable renewal rate and growth properties of cell populations in colon crypts
Published 4 June 2010 // 061909
Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins
Zhiping Xu and Markus J. Buehler
Published 7 June 2010 // 061910

Shape fluctuations of nearly spherical lipid vesicles and emulsion droplets
Isak Bivas
Published 7 June 2010 // 061911

Quantifying biodiversity and asymptotics for a sequence of random strings
Hitoshi Koyano and Hirohsa Kishino
Published 7 June 2010 // 061912

Different fitnesses for in vivo and in vitro evolutions due to the finite generation-time effect
David B. Saakian, Araks S. Martirosyan, and Chin-Kun Hu
Published 8 June 2010 // 061913

Compression of random coils due to macromolecular crowding: Scaling effects
C. Le Coeur, J. Teixeira, P. Busch, and S. Longeville
Published 11 June 2010 // 061914

Semiconservative quasispecies equations for polysomic genomes: The general case
Eran Itan and Emmanuel Tannenbaum
Published 14 June 2010 // 061915

Fluctuations and pattern formation in self-propelled particles
Shradha Mishra, Aparna Baskaran, and M. Cristina Marchetti
Published 16 June 2010 // 061916

Mutual information in time-varying biochemical systems
Filipe Tostevin and Pieter Rein ten Wolde
Published 16 June 2010 // 061917

Symmetries of interacting helices of charge
Jonathan Landy and Joseph Rudnick
Published 17 June 2010 // 061918

Exactly solvable model for helix-coil-sheet transitions in protein systems
John S. Schreck and Jian-Min Yuan
Published 17 June 2010 // 061919

Dynamic modes of red blood cells in oscillatory shear flow
Hiroshi Noguchi
Published 22 June 2010 // 061920

Stochastic cellular automata model of neural networks
A. V. Goltsev, F. V. de Abreu, S. N. Dorogovtsev, and J. F. F. Mendes
Published 22 June 2010 // 061921

Motor-driven effective temperature and viscoelastic response of active matter
Konstantin I. Morozov and Len M. Pismen
Published 23 June 2010 // 061922

Inclusion of noise in iterated firing time maps based on the phase response curve
Fred H. Sieling, Carmen C. Canavier, and Astrid A. Prinz
Published 25 June 2010 // 061923

Propagation of firing rate by synchronization and coherence of firing pattern in a feed-forward multilayer neural network
Ming Yi and Lijian Yang
Published 28 June 2010 // 061924

Ion-channel-like behavior in lipid bilayer membranes at the melting transition
Jill Gallaher, Katarzyna Wodzinska, Thomas Heimburg, and Martin Bier
Published 30 June 2010 // 061925

BRIEF REPORTS

Maze-solving by chemotaxis
A. M. Reynolds
Published 21 June 2010 // 062901

July 2010
Volume 82, Number 1, Articles (01xxxx)
http://pre.aps.org/toc/PRE/v82/i1

RAPID COMMUNICATIONS

Stop-and-go kinetics in amyloid fibrillation
Jesper Ferkinghoff-Borg, Jesper Fonslet, Christian Bøyschau Andersen, Sandeep Krishna, Simone Pigolotti, Hisashi Yagi, Yuji Goto, Daniel Otzen, and Mogens H. Jensen
Published 1 July 2010// 010901(R)
Phase-disorder-induced double resonance of neuronal activity
Xiaoming Liang, Mukeshwar Dhamala, Liang Zhao, and Zonghua Liu
Published 1 July 2010 // 010902(R)

Articles

Evolutionary dynamics from a variational principle
Peter Klimek, Stefan Thurner, and Rudolf Hanel
Published 6 July 2010 // 011901

Selection via flatness as a dynamical effect in evolution models with finite population
David B. Saakian and Chin-Kun Hu
Published 7 July 2010 // 011902

Stimulus-dependent suppression of chaos in recurrent neural networks
Kanaka Rajan, L. F. Abbott, and Haim Sompolinsky
Published 7 July 2010 // 011903

Evolution models with lethal mutations on symmetric or random fitness landscapes
Zara Kirakosyan, David B. Saakian, and Chin-Kun Hu
Published 7 July 2010 // 011904

One-particle-thick, solvent-free, coarse-grained model for biological and biomimetic fluid membranes
Hongyan Yuan, Changjin Huang, Ju Li, George Lykotrafitis, and Sulin Zhang
Published 12 July 2010 // 011905

Neutrality and evolvability of designed protein sequences
Arnab Bhattacharjee and Parbati Biswas
Published 12 July 2010 // 011906

Phase-2 reentry in cardiac tissue: Role of the slow calcium pulse
Inma R. Cantalapiedra, Angelina PeOaranda, Blas Echebarria, and Jean Bragard
Published 13 July 2010 // 011907

Distribution of essential interactions in model gene regulatory networks under mutation-selection balance
Z. Burda, A. Krzywicki, O. C. Martin, and M. Zagorski
Published 14 July 2010 // 011908

cAMP diffusion in Dictyostelium discoideum: A Green’s function method
Daniel S. Calovi, Leonardo G. Brunnet, and Rita M. C. de Almeida
Published 15 July 2010 // 011909

Mosquito proboscis: An elegant biomicroelectromechanical system
X. Q. Kong and C. W. Wu
Published 16 July 2010 // 011910

Model for the orientational ordering of the plant microtubule cortical array
Rhoda J. Hawkins, Simon H. Tindemans, and Bela M. Mulder
Published 19 July 2010 // 011911

Inference in alpha rhythm phase and amplitude modeled on Markov random field using belief propagation from electroencephalograms
Yasushi Naruse, Ken Takiyama, Masato Okada, and Tsutomu Murata
Published 19 July 2010 // 011912

Subdiffusive motion of a polymer composed of subdiffusive monomers
Stephanie C. Weber, Julie A. Theriot, and Andrew J. Spakowitz
Published 19 July 2010 // 011913

Josephson junction simulation of neurons
Patrick Crotty, Dan Schult, and Ken Segall
Published 19 July 2010 // 011914

Normal modes and phase transition of the protein chain based on the Hamiltonian formalism
Hon-Wai Leong, Lock Yue Chew, and Kerson Huang
Published 21 July 2010 // 011915

Topological solitons and folded proteins
Maxim Chernodub, Shuangwei Hu, and Antti J. Niemi
Published 21 July 2010 // 011916

Statistics of camera-based single-particle tracking
Andrew J. Berglund
Published 22 July 2010 // 011917
Fixed points and limit cycles in the population dynamics of lysogenic viruses and their hosts
Zhenyu Wang and Nigel Goldenfeld
Published 22 July 2010 // 011918

Molecular origin of strain softening in cross-linked F-actin networks
Hyungsuk Lee, Jorge M. Ferrer, Matthew J. Lang, and Roger D. Kamm
Published 22 July 2010 // 011919

Extinction of refugia of hantavirus infection in a spatially heterogeneous environment
Niraj Kumar, R. R. Parmenter, and V. M. Kenkre
Published 22 July 2010 // 011920

Network motifs come in sets: Correlations in the randomization process
Reid Ginoza and Andrew Mugler
Published 22 July 2010 // 011921

Structure and dynamics of hyaluronic acid semidilute solutions: A dielectric spectroscopy study
Published 23 July 2010 // 011922

Dynamics of the tug-of-war model for cellular transport
Yunxin Zhang and Michael E. Fisher
Published 23 July 2010 // 011923

Calcium window currents, periodic forcing, and chaos: Understanding single neuron response with a discontinuous one-dimensional map
J. Laudanski, C. Sumner, and S. Coombes
Published 26 July 2010 // 011924

Stochastic slowdown in evolutionary processes
Philipp M. Altrock, Chaitanya S. Gokhale, and Arne Traulsen
Published 28 July 2010 // 011925

Ergodic directional switching in mobile insect groups
Published 29 July 2010 // 011926
Biophysical Society Job Board

Finding a job in this tough economy can be hard. That is why you should take advantage of the Biophysical Society Job Board whose focus is on jobs specifically related to the field of biophysics. Currently, employers are looking for postdoctoral, faculty and research candidates. Visit the Job Board today by going to:

http://www.jobtarget.com/home/index.cfm?site_id=652
Postdoctoral Position in Chaotic Advection Dynamics
Northwestern University
Evanston, Illinois

The group of Professor Adilson E. Motter at the Department of Physics and Astronomy, Northwestern University, has an opening for a postdoctoral position in the area of chaotic advection dynamics. The research will focus on the theoretical and computational modelling of inertial effects in the dynamics of finite-size particles transported by fluid flows, including applications to passive and active processes in physical and biological systems. Candidates with background in nonlinear dynamics and experience with computer simulations are encouraged to apply. The candidate may have a Ph.D. in physics, applied mathematics, astrophysics, mechanical engineering or a related field. Previous research experience with chaos or fluid mechanics would be a plus. The ideal candidate will also have strong analytical and writing skills and a demonstrated ability to conduct independent high-impact research.

The appointment is available immediately. Salary is competitive, depending on qualifications and experience. To apply, please e-mail curriculum vitae along with a brief statement of how your research interests are related to this position to Adilson E. Motter at motter@northwestern.edu, and arrange to have two letters of recommendation e-mailed to the same address. Applications received before November 15, 2010 will receive full consideration. For more information about The Motter Group, please go to:

http://www.physics.northwestern.edu/people/personalpages/amotter.html

The Department of Physics and Astronomy at Northwestern University is located in Evanston, Illinois, which is situated along the shores of Lake Michigan only 30 minutes north of downtown Chicago. Northwestern University is an Affirmative Action/Equal Opportunity Employer. Applications from women and under-represented minorities are encouraged. Hiring is contingent upon eligibility to work in the US.

Postdoctoral Position in Computational Chemistry
University of Santiago de Compostela

The group of computational chemistry of the University of Santiago de Compostela (www.usc.es) offers a post-doctoral contract to investigate the adsorption of peptides onto self-assembled monolayers by molecular dynamics simulation. The work will be done under the supervision of Dr. Saulo A. Vazquez (University of Santiago de Compostela) and Dr. Emanuele Paci (University of Leeds).

Duration: one year, renewable, with flexible starting date.
Gross Salary: 32,000 Euro.
Location: Centre for Research in Biological Chemistry and Molecular Materials, University of Santiago de Compostela, Spain (http://www.usc.es/campusvidaci/eng/centro-singular-cigus.html)
Qualifications: Ph.D. Degree in chemistry, biochemistry, structural biology, physics or related disciplines.
Expertise in molecular dynamics simulations.

To apply please send an email and attach a CV to:

Dr. Saulo A. Vazquez (saulo.vazquez@usc.es)
Conferences, Meetings, Workshops, Summer Schools

If you would like to post an announcement for a workshop or conference in this Newsletter, send your notice (text) or a PDF document (resized to a maximum size of 7 inches x 10 inches) to the editors.

XL Winter Meeting on Statistical Physics
January 4-7, 2011
Monte Taxco Hotel
Guerrero, Mexico

The purpose of the meeting is to bring together the national community of physicists working on statistical physics and related areas, in order to exchange knowledge and results, and discuss new lines of research. We also invite a group of internationally-renowned scientists who have made fundamental contributions in their respective fields. This provides the opportunity to exchange ideas between national and foreign colleagues in a pleasant and informal environment.

The main program consists of plenary lectures given by selected invited speakers who present, in a non-technical way, the "state of the art" in their fields of study, as well as their main contributions. In addition to the plenary lectures, there will be poster sessions.

The deadline for early registration is December 1, 2010.

For additional information and to register, point your browser to:

https://sites.google.com/site/wintermeetingstatphys/

Or contact the organizing committee via the following email address:

winter.statphys@gmail.com
Technical Areas to be covered at this conference include:

Bioinformatics & Computational Biology:
- Protein structure, function and sequence analysis
- Protein interactions, docking and function
- Computational proteomics
- DNA and RNA structure, function and sequence analysis
- Gene regulation, expression, identification and network
- Structural, functional and comparative genomics
- Computational evolutionary biology
- Data acquisition, normalization, analysis and visualization
- Algorithms, models, software, and tools in Bioinformatics
- Any novel approaches to bioinformatics problem

Bioinformatics & Computational Biology:
- Biomedical imaging, image processing & visualization
- Bioelectrical and neural engineering
- Biomaterials and biomedical optics
- Methods and biology effects of NMR/CT/ECG technology
- Biomedical devices, sensors, and artificial organs
- Biochemical, cellular, molecular and tissue engineering
- Biomedical robotics and mechanics
- Rehabilitation engineering and clinical engineering
- Health monitoring systems and wearable system
- Bio-signal processing and analysis
- Biometric and bio-measurement
- Biomaterial and biomedical optics
- Other topics related to biomedical engineering

Special Sessions:
- Biomedical imaging
- Biostatistics and biometry
- The information technology in bioinformatics
- Environmental pollution & public health

For more information about this conference, please contact: submit@icbbe.org
Cooperation occurs throughout the biological world, and similar mechanisms and patterns of cooperative organization appear across the hierarchies of biological structures. Genes organize into genomes, cells into multicellular organisms, organisms into institutions and societies, and species into ecologies. Might there be important analogies between mechanisms at one such level of organization and mechanisms at a different level?

Cooperation benefits a society, while evolution selects at the level of individuals. Despite insights into the mathematics of selection in the presence of cooperation, many aspects of the development of cooperation remain mysterious in practice.

What is an individual? Is individuality discrete or continuous? Can selection act simultaneously on multiple scales? How did cells abandon reproduction to a specialized germ line? How did stable multicellularity evolve in the face of noncooperative advantages?

When does stable cooperation require enforcement? Can the fitness functions of evolutionary theory capture an individual's transfer of fitness to a collective? Are individuals the correct fundamental units of cooperative systems?

The intra-cellular cooperation of genes, molecular machines, and organelles resembles a microscopic city; does the heterogeneity of the conventional units of biology reflect an ancient cooperation predating the origin of life?

Is an ecosystem composed of individuals, or is an individual composed of ecosystems? Can the evolution of cooperation inform engineering or economic regulation?

This workshop will investigate these subtle and provocative issues, which are often ignored or misunderstood. Talks will cover subjects ranging from cooperation inside of cells, bacterial biofilms, social insect colonies, human institutions and societies, cancer etiology and progression to the question of how single cells subsumed their fitness in favor of multi-cellular collectives.

Register by November 5, 2010

Registration is free. Please see website for more information.