Thirty-seven APS prizes and awards will be presented during special sessions at three spring meetings of the Society: the 2009 March Meeting, March 16-20, in Pittsburgh, PA; the 2009 April Meeting, May 2-5, in Denver, CO; and the 2009 Atomic, Molecular and Optical Physics Meeting, May 19-23, in Charlottesville, VA.

Citations and biographical information for each recipient follow. The Apker Award recipients listed below were named at the March Meeting.

2009 PRIZES, AWARDS AND DISSERTATIONS

Will Allis Prize for the Study of Ionized Gases

NEXT PRIZE AWARDED IN 2010

Hans A. Bethe Prize

David Arnett

University of Arizona

Citation: “For his outstanding and fundamental work on high nuclear reaction rates that multi-dimensional and partly out-of-equilibrium evolution of stars and supernovae explosions and their yields of new isotopes.”

David Arnett received a B.S. in physics from the University of Kentucky in 1961 and a Ph.D. in physics from Yale University in 1968. He has held positions at Caltech, Rice University, UT Austin, University of Illinois, Champaign-Urbana, University of Chicago (Illinois, Champaign-Urbana, UT Austin, University of Illinois, Champaign-Urbana), and is currently the Livermore Professor of Astronomy and Astrophysics at the University of California, Berkeley. Arnett performed the first radiation hydrodynamics simulations of gravitational collapse and the first simulations of thermonuclear supernovae. With collaborators and students, he showed that supernovae yield quantitative predictions of chemical and isotope abundances in agreement with data. He predicted new types of supernovae (types Ib and Ic) which were discovered a few years later. He and his collaborators simulated stars in 2D and 3D, discovering similarities relevant to SN1987A and devising analytic theory to capture the effects of turbulence.

Robert D. McKeown

Robert D. McKeown

California Institute of Technology

Citation: “For his pioneering work on studying nucleon tunneling, particularly particle-vibrating electron scattering, in particular for the first measurement of the quasiparticle density of states of superconductors and for the historical pioneering of thin film magnetism on the critical field of high-field superconductors.”

Robert D. McKeown received a B.S. in physics in 1974 from Stony Brook University in Stony Brook, NY where he later developed an interest in experimental nuclear physics. He continued his work in the subject as a graduate student at Princeton University, receiving his Ph.D. in physics in 1979. After one year on the scientific staff at Argonne National Laboratory, McKeown took a position at the California Institute of Technology. His research interests have included studies of weak nucleon tunneling, in particular for the first measurement of the quasiparticle density of states of superconductors and for the historical pioneering of thin film magnetism on the critical field of high-field superconductors. In 1970 McKeown and collaborators discovered spin-polarized electron tunneling. In 1994 he helped analyze Moorhead and McKeown’s successful tunneling experiment between ferromagnetic metals at room temperature. Terunobu Miyazaki received his B.S., M.S. and Ph.D. in applied physics from Tokoha University in 1967, 1969 and 1972, respectively. From 1973 to 1975 he was a research associate and a fellof at the Institute for Solid State Physics and Technology. Since 1981 he has been a faculty member at Tohoku University from 1991 until March 2007. He has been a professor at WPI Advanced Institute for Materials Research, Tohoku University since November 2007. His research fields include magnetism and magnetic materials. He is especially interested in searching for new functionalized magnetic materials, namely spin-electronic materials. He currently participates in the Japan Society for the Promotion of Science Nanomagnetics Novel Device Project.

Broida Prize

Gustav Gerber

University of California, Santa Barbara

Citation: “For the pioneering experimental realization of coherent control of molecular dynamics and chemical reactions with feedback-optimized laser pulses.”

Gustav Gerber studied physics and mathematics at the Free University of Berlin and the University of Freiburg. He received a Dr. rer. nat., from the University of Freiburg in 1974 and a Habilitation in experimental physics from the University of Freiburg in 1982. Gerber was a Postdoctoral Fellow with H.P. Broida from 1974 to 1976. He has held academic positions at the University of Freiburg, the University of Kaiserslautern, and the University of Würzburg. His research interests have included femtosecond laser spectroscopy, non-linear optics, ultrafast (picosecond and attosecond) lasers, adaptive femtosecond pulse shaping, coherent control of chemical reactions, X-ray emission through high harmonic generation, and femtosecond quantum control of molecular switches and bond-forming chemical reactions.

Oliver E. Buckley Condensed Matter Physics Prize

Robert Meserve

Massachusetts Institute of Technology

Citation: “To Robert Meserve, Terunobu Miyazaki, Jagadeesh Moodera and Paul Tedrow for pioneering work in the field of spin-dependent tunneling and for the historical prediction of these phenomena to the field of magnetoelectronics.”

Paul Tedrow

Massachusetts Institute of Technology

Citation: “For his pioneering research at the California Institute of Technology in 1966. Although recruiting a year as a post-doc at Cornell, Tedrow began working with Robert Meserve at MIT’s Francis Bitter National Magnet Laboratory in July 1967. Their investigations of the effects of electron spin paramagnetism on the critical field of high-field superconductors led to the discovery in 1970 of the splitting of the quasiparticle density of states of superconductors in a magnetic field. The experiments were extended to include ferromagnets and other superconductors. With some divagation caused by the discovery of high-Tc superconductivity, Tedrow’s career was spent following various paths implied by the initial findings. He spent the summer of 1995 as a visiting scientist at Stanford University. He retired from MIT and physics in July 1998.”

Robert Meserve, reared in a family of university faculty in Ithaca, New York, obtained his B.S. in physics from the University of Michigan in 1943. In the army from 1943 to 1946, he served in the Tenth Mountain Division and at the Engineer Research and Development Laboratories (ERDL). He worked at ERDL, as a civilian physicist from 1951 to 1955. In 1961 he received a Ph.D. from Yale University. He joined the MIT research staff at the Lincoln Laboratory in 1961, moving to the National Magnet Laboratory in 1963. He retired and became a visiting scientist in 1994. His research centered on tunneling, in particular the development of ferromagnetic fields. In 1970 Meserve and collaborators discovered spin-polarized electron tunneling. In 1994 he helped analyze Moorhead and McKeown’s successful tunneling experiment between ferromagnetic metals at room temperature.

Terunobu Miyazaki received his B.S., M.S. and Ph.D. in applied physics from Tokoha University in 1967, 1969 and 1972, respectively. From 1973 to 1975 he was a research associate and a fellow at the Institute for Solid State Physics and Technology. Since 1981 he has been a faculty member at Tohoku University from 1991 until March 2007. He has been a professor at WPI Advanced Institute for Materials Research, Tohoku University since November 2007. His research fields include magnetism and magnetic materials. He is especially interested in searching for new functionalized magnetic materials, namely spin-electronic materials. He currently participates in the Japan Society for the Promotion of Science Nanomagnetics Novel Device Project.

Davison-Germer Prize in Atomic or Surface Physics

Yves Chabal

University of Texas, Dallas

Citation: “For the fundamental and collaborative application of fundamental nuclear and quantum chemical methods to silicon surface reactions important in microelectronics.”

Krishnan Raghavachari

Baylor University

Citation: “For the individual development and collaborative application of fundamental nuclear and quantum chemical methods to silicon surface reactions important in microelectronics.”

Yves Chabal currently holds a position as professor in the Department of Physics and Astronomy at the University of Texas at Dallas. He obtained his B.A. in physics from Pennsylvania State University in 1974 and his Ph.D. in physics from Cornell University in 1980. He then spent 22 years at Bell Laboratories, where he studied fundamental processes relevant to the microelectronic industry, and developed with Krishnan Raghavachari a mechanistic understanding of hydrogen passivation and oxidation of silicon surfaces. He then was a faculty member at Rutgers University and the Director of the Laboratory for Surface Modification, where he developed in-situ methods to study atomic layer deposition and chemical functionalization of silicon surfaces. He joined UT Dallas in 2008 and works on hydrogen storage and nanoselection.

Krishnan Raghavachari obtained his B.S. in chemistry in 1973 from Madras University (India), his M.S. in Indian Institute of Technology (Madras) in 1975, and his Ph.D. from Carnegie-Mellon University in 1981. He joined Bell Laboratories as a research scientist in 1981. He joined Indiana University as a professor of chemistry in 2002. His work has broad spectrum of problems ranging from chemical bonding in small clusters to computational investigations of semiconductors and nanoscopic materials. Apart from his work on silicon surface chemistry, he is best known for the development of accurate electron correlation techniques in quantum chemistry. Most recently, his group has focused on new electronic embedding methods in quantum chemistry, accurate models for theoretical thermochemistry, and on metal oxide clathrates to explore their roles in catalytic activity.

Max Delbruck Prize in Biological Physics

James D. Brash

University of California, Santa Barbara

Citation: “For a broad range of fundamental contributions to relativistic quantum fields, quantum field theory, general relativity, and quantum cosmology.”

James D. Brash was educated at Princeton University (A.B., 1960), and the California Institute of Technology where he completed a Ph.D. in 1964. He has held postdoctoral appointments at the Institute for Advanced Study, Princeton University, and the University of Chicago. He is currently Research Professor and Professor of Physics Emeritus at the University of California at Santa Barbara and an external faculty member of the Santa Fe Institute. His scientific work is concerned with the application of general relativity to realistic astrophysical situations, especially cosmology. He has contributed to the understanding of gravitational waves, relativistic stars, and black holes. He is currently interested in the quantum origin of the universe and quantum cosmology and currently interested in the quantum origin of the universe and quantum cosmology and its connection to the understanding of gravitational waves and the very early universe.

Julio Maria Ottino

Northwestern University

Citation: “For outstanding contributions to the fundamental understanding of chaotic mixing in laminar flows, mixing and segregation in granular flows and for groundbreaking experimental work that has led to the broad application of these concepts.”

Julio M. Ottino is currently Dean of the Robert R. McCormick School of Engineering and Applied Sciences at Northeastern University. He was the founder and co-director of the big bang group, where he conducted a program in chemical and biological engineering where he focused on fluid dynamics, fluid mechanics, microfluidics, geophysical sciences, and nonlinear dynamics and chaos. He is an Advisor to Unilever, was a member of the Technical Board of Dow Chemical, and is a member of the International Review of Engineering in the UK.

Fluid Dynamics Prize (2008)

Table of Contents

<table>
<thead>
<tr>
<th>1 Prize and Award Recipients</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 New APS Fellows</td>
</tr>
<tr>
<td>3 Nominations for 2009 Prizes and Awards</td>
</tr>
</tbody>
</table>
James Clark Maxwell Prize for Plasma Physics (2008)
Ronald C. Davidson
Princeton Plasma Physics Laboratory

Citation: “For pioneering contributions to the physics of one-component non-neutral plasmas, intense charge particle beams, and nonlinear interaction processes in high-temperature plasmas.”

Ronald C. Davidson has been a Professor of Applied Science and Engineering at Princeton University since 1991, and was Director of the Princeton Plasma Physics Laboratory from 1991-1996. He received his B.S. from McMaster University in 1963, and a Ph.D. from Princeton University in 1966. He has held positions at the University of California at Berkeley, the University of Maryland and Massachusetts Institute of Technology. His laboratory has made numerous fundamental theoretical contributions to several areas of plasma physics, including nonneutral plasmas, nonlinear effects and anomalous transport, kinetic equilibrium and stability of plasma flows, laser-plasma interactions in high energy accelerators, and coherent radiation generation by relativistic electrons.

James C. McGroddy Prize for New Materials
William L. Johnson
California Institute of Technology

Citation: “For the development of slow cooling methods for the fabrication of bulk metallic glasses with remarkable mechanical properties and the characterization and application of these materials.”

William L. Johnson, the Harry S. Mosher Professor of Chemistry and Physics, is known for his contributions to the chemistry of glasses and the physics of single molecules, supercooled liquids, polymer physics, and trapping of single nanoparticles in optical tweezers.

George E. Pake Prize
David J. Bishop
Lawrence Berkeley National Laboratory

Citation: “For his effective leadership of AT&T-Bell Labs research during an especially turbulent time in the telecommunications industry, and for his seminal contributions to low-temperature physics.”

David J. Bishop is currently the CEO of QOC, LLC, the wholly-owned subsidiary of Alcatel-Lucent dedicated to the U.S. federal government market with advanced R&D solutions. Prior to his role at QOC, he was the Head of the Government Relations Office at AT&T-Bell Labs, and was a member of the senior management team that led Bell Labs in the 1990s from a struggling situation to a new program in information science. Before that, he was Executive Director of Government Relations at Bell Labs, Bell Laboratories. Bishop graduated from Syracuse University in 1973 with a B.S. in physics and electronics, and received a Ph.D. in physics from Cornell University.

W.K.H. Panofsky Prize in Experimental Particle Physics
Aldo Menzione
INFN, Sezione di Pisa, and University of Pisa

Citation: “For their leading role in the establishment and use of precision silicon tracking detectors at hadron colliders, enabling broad advances in knowledge of the top quark and other hadrons.”

I. I. Rabi Prize
Mikhail Lukin
Harvard University

Citation: “For pioneering theoretical and experimental work at the interface between quantum mechanics and quantum information processing, and the quantum many body problem.”

Mikhail Lukin received his Ph.D. from Harvard University in 1998. He was a Postdoctoral Scholar at the Institute for Theoretical Atomic and Molecular Physics at Harvard University from 1998-2001. He is currently Professor of Physics at Harvard and a faculty member of the Center for Engineered Quantum Systems and quantum information science. He has received a number of awards, including Alfred P. Sloan Foundation Fellowship.
Arthur L. Schawlow Prize in Laser Science
Robert W. Field
Massachusetts Institute of Technology

Citation: “For pioneering work and application of multiple resonance laser spectroscopy and effective methods for model, that reveal fundamental mechanisms of chemical bond breaking, electronic transitions, and novel nanoscale/macroscopic vibrational radiation, and anisotropically.”

Robert W. Field
University of California, Berkeley

Citation: “For his analysis of the potential optical double resonance studies of diatomic molecules using tunable lasers and showed how to extract global information about the electronic structure of the alkane electron monolayer from the systematic study of spectroscopic properties. At his students and postdocs have continued to develop new laser spectroscopic techniques.”

Robert W. Wilson Prize for Achievement in the Physics of Particle Accelerators
Natsuru Ozaki
Brookhaven National Laboratory

Citation: “For his outstanding contribution to the design and construction of accelerators that has led to the realization of major machines for fundamental science on two continents, and his promotion of international collaboration.”

Davison E. Soper
University of Oregon

Citation: “For work in perturbative Quantum Chromodynamics, including applications to problems of the interpretation of high energy particle collisions.”

John C. Collins
Pennsylvania State University

Citation: “For his contributions to QCD, including his identification of the quark structure of the proton and the discovery of quark confinement.”

James C. Ecker
Duke University

Citation: “For the significant contributions he has made to the understanding of the complex exchange bias mechanism crucial to advanced sensors used in the readwrite heads of hard disks and their crucial and enabling and inclusive envision of underpinnings in physics.”

Prize for a Faculty Member for Research in an Undergraduate Institution
James C. Ecker
Duke University

Citation: “For his work in the field of materials physics, his important contributions to understanding and control of magnetic properties, and his leadership in the development of novel materials.”

Prize for Industrial Application of Physics
Sujit S. Datta
Wyatt Technology Corporation

Citation: “For pioneering developments in the physics of the in vitro scattering problem: new advanced molecular technologies and molecular recognition of complex biological systems.”

Philip J. Wyatt
University of Chicago (A.B. 1952, S.B. 1954) with additional study at the Clinton Laboratory in Oak Ridge, Tenn. He completed his graduate studies at the University of Chicago (M.S. 1956) and the State University of New York (Ph.D. 1959). Upon graduation he joined the Ford Motor Company’s Ammonia Division (1959), where he worked on the fundamental understanding of catalytic processes at the atomic level. He then joined the faculty at Princeton University. He is currently the Director of the Center for Quantum Information and Quantum Control, and the Director of the Quantum Information Science Program at Princeton University.

Sujeet S. Datta
University of Texas at Austin

Citation: “For his outstanding contributions to the development of novel materials for fundamental science on two continents, and his promotion of international collaboration.”

David Adler Lectureship Award in the Field of Materials Physics
Salvatore Torquato
Princeton University

Citation: “For his highly original and deep studies of n-point correlation functions in heterogeneous media, and for his outstanding communication of these results through publication and public presentation.”

Salvatore Torquato
Princeton University

Citation: “For his pioneering work in the field of materials physics, his important contributions to understanding and control of magnetic properties, and his leadership in the development of novel materials.”

LeRoy Apekner Award

PhD-Granting Institutions
Sajit S. Datta
University of Texas at Austin

Citation: “For his outstanding contributions to the development of novel materials for fundamental science on two continents, and his promotion of international collaboration.”

Sajit S. Datta
University of Texas at Austin

Citation: “For his outstanding contributions to the development of novel materials for fundamental science on two continents, and his promotion of international collaboration.”

George E. Valley, Jr. Prize
Paul Sorensen
Brookhaven National Laboratory

Citation: “For his role in the discovery of spark number of scaling in the elliptic flow of hadrons in relativistic heavy-ion collisions.”

Paul Sorensen
Brookhaven National Laboratory

Citation: “For his role in the discovery of spark number of scaling in the elliptic flow of hadrons in relativistic heavy-ion collisions.”

Edward A. Bouchet Award
Gaston R. Gutierrez
Fermilab

Citation: “For contributions to the D-Zero collaboration, in particular the ‘novel-technique’ method of extracting precise measurements of standard-model parameters, as well as his outstanding contributions to society.”

John Dawson Award for Excellence in Plasma Physics (2008)
Stewart C. Prager
University of Wisconsin-Madison

Citation: “For his contributions to the D-Zero collaboration, in particular the ‘novel-technique’ method of extracting precise measurements of standard-model parameters, as well as his outstanding contributions to society.”

Stewart C. Prager
University of Wisconsin-Madison

Citation: “For his contributions to the D-Zero collaboration, in particular the ‘novel-technique’ method of extracting precise measurements of standard-model parameters, as well as his outstanding contributions to society.”

APS Prizes and Awards 3
a professor of physics. He currently directs the MIST experiment in plasma physics and fusion research, and the Center for Turbulence Research (CTurRe) and the Self-Organization Laboratory in Astrophysical Plasma, a multi-university, multi-national center supported under the NSF Physics Frontier Centers program. His research focuses on basic physics of space and astrophysical plasmas (particularly magnetic confinement) and, recently, connections between astrophysics and biophysics.

Michael C. Zarnstorff is a Principal Research Physicist at the Princeton Plasma Physics Laboratory. He was named a Distinguished Graduate Fellow by the laboratory in 1993 and teaches in the advanced education program at Princeton University. He received his Ph.D. in chemical engineering from the University of Wisconsin-Madison (1984). Zarnstorff is an experimental plasma physicist with interest in the basic physics of plasma transport, confinement and configuration optimization. His research included the first observations of neoclassical and turbulent transport, transport barriers, and the confinement and stability of different magnetic field configurations. He led the National Compact Stellarator Experiment physics group and was one of the key leaders of the TTF experimental program. He has collaborated on experiments across the US and in Germany, and the UK.

John H. Dillon Medal for Research in Polymer Physics

Venkat Ganesan University of Texas

Citation: "For his contributions to innovative computer simulation approaches and analysis of equilibrium and dynamic properties of complex polymeric materials and nano-composites.

Venkat Ganesan is a Distinguished Professor in the Department of Chemical Engineering at the University of Texas at Austin. He obtained his bachelor's degree from the Indian Institute of Technology, Madras, and his master's and Ph.D. in chemical engineering from the Massachusetts Institute of Technology in 1979 as a postdoctoral researcher at the Materials Research Laboratories at the University of California at Santa Barbara before joining UT Austin. He began his career research interests on the development of computer simulation approaches for predicting the equilibrium and dynamic properties of complex polymeric materials and polymers with nano-composites. More recently, his research has started making forays into the structure-property relationships in polymers used for fuel cell and organic photovoltaic applications.

Excellence in Physics Education

Two Year College Workshop Team (Cartis Higgiekl, Tom O'Kuma, David Maloney)

Citation: "For leading initiatives in introducing physics into two-year college in new instructional methods, in developing new materials based on physics education research, and in creating locally nettropiac, texmically in two-year college."

Joseph Kelthie Award for Ad- Core Mentary Science

Robert Schoekolf Yale University

Citation: "For development of techniques for high-field physics and broad use of quantum noise, including the radio-frequency single-electron transistor and absolute thermometry based on electron spin resonance.

Robert J. Schoellkopf, the William A. Norton Professor of Applied Physics and Physics at Yale University, is noted for his contributions to quantum transport, single-electron devices and charge dynamics in quantum systems. He and his laboratory have invented the Radio-Frequency Single-Electron Transistor, an electrometer capable of measuring sub-electron charge changes on nanoscale metal structures, which have been applied to Schackhoff’s and of Steven Girvin engineered a superconducting quantum interference device (SQUID) that would be used to detect differences between distant qubits on a chip. Schoellkopf earned a bachelor’s degree from Princeton University and a Ph.D. in physics from the University of Wisconsin-Madison (1984). Zarnstorff is an experimental plasma physicist with interest in the basic physics of plasma transport, confinement and configuration optimization. His research included the first observations of neoclassical and turbulent transport, transport barriers, and the confinement and stability of different magnetic field configurations. He led the National Compact Stellarator Experiment physics group and was one of the key leaders of the TTF experimental program. He has collaborated on experiments across the US and in Germany, and the UK.

John H. Dillon Medal for Research in Polymer Physics

Venkat Ganesan University of Texas

Citation: "For his contributions to innovative computer simulation approaches and analysis of equilibrium and dynamic properties of complex polymeric materials and nano-composites.

Venkat Ganesan is a Distinguished Professor in the Department of Chemical Engineering at the University of Texas at Austin. He obtained his bachelor's degree from the Indian Institute of Technology, Madras, and his master's and Ph.D. in chemical engineering from the Massachusetts Institute of Technology in 1979 as a postdoctoral researcher at the Materials Research Laboratories at the University of California at Santa Barbara before joining UT Austin. He began his career research interests on the development of computer simulation approaches for predicting the equilibrium and dynamic properties of complex polymeric materials and polymers with nano-composites. More recently, his research has started making forays into the structure-property relationships in polymers used for fuel cell and organic photovoltaic applications.
his Ph.D. in physics from the University of California at Berkeley in 2007. At Illinois, Clayton performed an independent investigation of the spin dynamics of the Muon g-2 experiment, which utilized muons as an exotic magnetic field source.

Marshall N. Rosenbluth Outstanding Doctoral Thesis Award

University of Wisconsin Citation: For experimental work on the magnetic scattering of charged particles in a laboratory magnetic field and the diffractive electron-beam channel.

Ryan B. Patterson California Institute of Technology

Citation: *For Search for Muon Neutrino to Electron Neutrino Oscillations (with Jeffrey L. Hall and Samuel E. Hild)*.

Russian-Bulgarian Joint Award in Experimental Particle Physics (2008)

Russian-Bulgarian Joint Award in Experimental Particle Physics

Ryan B. Patterson

California Institute of Technology

Citation: *For seminal contributions to the field of high-energy physics and for outstanding work in the search for the Higgs boson.*

APS Council Announces 2008 APS Fellows

The APS Council elected the following as Fellows of the Society at its November 2008 meeting. The names and citations of the new APS fellows are listed below. Nominations for fellowship are received annually, and new fellows are elected at the annual meeting, and are forwarded for review to the appropriate division, topical group or fellow committee. The deadline for the various units appear on page 8 of this insert, and are posted on the web.

Fellowship nominations may be completed on the web at (http://www.aps.org/prizes/honors/fellowships/nominations.cfm). Information for completing the form is available at (http://www.aps.org/prizes/honors/fellowships/nominations.cfm).

APS Prizes and Awards
Gurevich, Alexander V.

Flacher, Michael

Feder, Michael

Fodor, Joseph P.

Aizenberg, Jonathan

Axelrod, Allan

Abele, James E.

Abele, James E.
null
Call for Nominations for 2010 APS Prizes and Awards

Nomination Deadline is July 1, 2009, unless otherwise indicated.

Will Alts Prize
Michael Branger, 1 Southfield Street, Darien 06820, Australia, Phone: 61 83204 2855 Email: Michael@branger.com

Hans A. Bethe Prize
John W. Nagle, Massachusetts Institute of Technology, 6-315, 77 Massachusetts Avenue, Cambridge, MA 02139, Phone: (617) 253-7787, Fax: (617) 253-9674 Email: cnagle@mit.edu

Tom W. Bonner Prize
Shrdull, Michigan State University, St. 352, East Lansing, MI 48824, Phone: (517) 353-5825 Email: scott@msu.edu

Herbert P. Broida Prize
NEXT PRIZE AWARDED IN 2011

Oliver E. Buckley Prize
David Auker, University of California, Santa Barbara, Department of Physics, 116 Church Street, SE Minneapolis, MN 55455, Phone: (612) 624-1299, Fax: (612) 624-4578 Email: danbaker@umn.edu

Mas Delbruck Prize
David U. S. Schaefer, Department of Physics, University of California, Berkeley, Berkeley, CA 94720, Phone: (510) 642-5537, Fax: (510) 642-5537

Einstein Prize
NEXT PRIZE AWARDED IN 2011

Fluids Dynamics Prize
Mohanf S. M. K. S. Mehnih, Department of Physics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, Phone: (858) 534-9770, Fax: (858) 534-9770

Danne Heineman Prize
Maryknoll School, 40 Laconia Road, Aylesbury, VT, Phone: (802) 665-9777, Fax: (802) 665-9777

Frank Isaakson Prize
Lauree Cooper, University of Illinois, Urbana-Champaign, Department of Mechanical Science & Engineering, 1206 W. Green Street, Urbana, IL 61801, Phone: (217) 333-2899 Email: frank.isaakson@uiuc.edu

Irving Langmuir Prize
NEXT PRIZE AWARDED IN 2011

Julius Edgar Lilienthal Prize
Richard Shearer, CT/RRD/10 100 100, CRB, 3990, Atlanta, GA 30342, Phone: (404) 327-7883, Email: richard/shearer@oreo.com

James C. McCreary Prize
M. Brian Maple, University of California, San Diego, Department of Bioengineering, 9500 Gilman Drive, La Jolla, CA 92037, Phone: (858) 534-9770, Email: bmaple@eng.ucsd.edu

Algesa Onsager Prize
Lars Rudolphson, University of California, Department of Physics, 98412, B.2, Building 110, Phone: (858) 534-9770, Email: bmaple@eng.ucsd.edu

Abraham Pais Prize
Mark Les, Sandia National Laboratory, PO Box 5800, MS 1415, Albuquerque, NM 87185, Phone: (505) 844-6400, Email: mel@bnl.gov

W.K.H. Panofsky Prize
Geoffrey George, Lawrence Berkeley National Laboratory, 500 University Avenue, Berkeley, CA 94720, Phone: (510) 487-5825, Email: ggeorge@lbl.gov

Earle K. Plyler Prize
David Perry, University of Akron, Department of Chemistry, Akron, OH 44325, Phone: (330) 972-6623, Email: dperry@uakron.edu

Polymer Physics Prize
Russell C. Graham, Department of Chemistry, 5701 Hamaker Hall, Michigan State University, E. Lansing, MI 48824, Phone: (517) 353-2581 Email: rgraham@msu.edu

Li Rabi Prize
NEXT PRIZE AWARDED IN 2011

Anasur Rahman Prize
Christopher Yeates, Department of Physics, University of California, Berkeley, Department of Physics, 5070, Berkeley, CA 94720, Phone: (510) 642-6247, Email: cyeates@ucanr.edu

Andre Sahakian Prize
Joel Primak, University of California, Santa Cruz, Department of Physics, Santa Cruz, CA 95064, Phone: (831) 459-3814 Email: joel@physics.ucsc.edu

For more information about the categories of prizes and awards being offered, please contact the Fellowships and Awards Committee at FAW@aps.org.