APS News

June 2005 (Volume 14, Number 6)

Scientists Make First Measurement on Ni-78 Half-Life

The half-life of the unstable, exotic nucleus nickel-78 (Ni-78) has been measured for the first time, and was found to be only 110 ms, or about a tenth of a second, according to Hendrik Schatz, a researcher at Michigan State University. Its decay plays a key role in the synthesis of the heavy elements, the understanding of which is one of the 11 Greatest Unanswered Questions in Physics (Discover Magazine, February, 2002). Schatz reported on the most recent experimental results at Michigan State’s National Superconducting Cyclotron (NCSL) during the 2005 April meeting in Tampa.

Physicists believe the heavy elements were built from lighter atoms, such as iron, in supernova explosions billions of years ago, which triggered a chain of nuclear reactions–a process known as rapid neutron capture. How this process takes place is still a mystery. The NCSL is designed to study this question by reproducing the conditions inside supernovas with energetic nuclear collisions.

Ni-78 is known as a "doubly magic" nucleus because it contains a "magic number" of both protons and neutrons–in this case 28 protons, and 50 neutrons–that fill shells in the nucleus.

There are only 10 such nuclei in nature, and Ni-78 has the largest neutron excess. Because the Ni-78 isotope must dispose of so many extra neutrons, it is extremely unstable and does not exist in nature, except briefly in exploding supernovae. The NCSL scientists were able to create the isotope by accelerating a stable isotope of krypton gas to high speeds and then colliding it with a target of beryllium metal. The NCSL is the nation’s premier rare isotope accelerator, capable of shooting 100 billion krypton atoms a second. Even then, Ni-78 is so rare, it only shows up about twice a day.

Ni-78 acts as a kind of valve in the rapid neutron capture process. A shorter half-life would be like opening the valve a little, allowing the process to develop more quickly. Since the NSCL team found that the half-life was substantially shorter than expected, this means nature can produce heavy elements faster than previously thought.

APS encourages the redistribution of the materials included in this newspaper provided that attribution to the source is noted and the materials are not truncated or changed.

Editor: Alan Chodos
Associate Editor: Jennifer Ouellette
Staff Writer: Ernie Tretkoff

June 2005 (Volume 14, Number 6)

Table of Contents

APS News Archives

Contact APS News Editor

Articles in this Issue
New Experiment Casts Doubt on Elusive Pentaquark
April APS Prize Recipients
APS Picks Grand Prize Winner in PhysicsQuest Competition
Did Einstein Get it Wrong?
Newest Topical Group Holds Sessions at 2005 March Meeting
RHIC Detects Liquid State of Quark-Gluon Matter
New Results Hint at Strangely Magnetic Proton
Global Event Celebrates Physics on Anniversary of Einstein's Death
The Back Page
Globalization of Science Brings Visa, Workforce Issues to the Fore
Scientists Make First Measurement on Ni-78 Half-Life
Deep2 Data Suggests Fine Structure Constant Doesn't Change
Human Rights Session Mirrors Einstein’s Lifelong Interests
Four APS Presidents Remembered In Council Resolutions
Pais Prize Debuts at April Meeting.
Council Statements Address Research Funding, Power Lines, and Advice for Congress.
International News
Members in the Media
This Month in Physics History
Washington Dispatch
Zero Gravity: The Lighter Side of Science