Novel Indirect Hydrogen Storage Materials

Claus Hviid Christensen

Danish National Research Foundation’s Center for Sustainable and Green Chemistry

www.csg.dtu.dk
Basic Research Needs for the Hydrogen Economy

March 23, 2004
APS March Meeting
Montreal, Canada

Presented by:
Mildred Dresselhaus
Massachusetts Institute of Technology
millie@mgm.mit.edu
617-253-6864
Hydrogen Storage for Vehicles

Schlapbach & Züttel, *Nature*

3.59 wt% 1.37 wt%
Direct Hydrogen Storage

- Liquefied H₂
 - Boil-off, cost of liquefying, safety
- High pressure H₂
 - Cost of compression, safety, volumetric density
- Metal hydrides, e.g. MgH₂
 - Low bulk density, kinetics
- Complex hydrides, e.g. NaAlH₄, LiAlH₄
 - kinetics/catalyst, synthesis, reversibility
- Chemical hydrides, e.g. borane-ammonia adducts
 - Expensive materials, reversibility, complex system
- Physisorption in porous materials
 - Material developments, synthesis, gravimetric and volumetric density
Indirect Hydrogen Storage

- Methane
 - reforming, reformate clean-up, volumetric density

- Methanol
 - reforming, reformate clean-up, safety

- Ethanol
 - reforming, reformate clean-up, cost

- Ammonia
 - reforming, safety
Ammonia as Hydrogen Carrier

- Dense liquid; ~ 18wt% of hydrogen
- Optimized catalyst exist
- Relatively easy to reform to H\textsubscript{2}

- But liq. NH\textsubscript{3} is normally considered too dangerous ! ! ? ?
Ammonia Storage in Ammines

\[\text{Mg(NH}_3\text{)}_6\text{Cl}_2 \text{ (s)} \rightarrow \text{MgCl}_2 \text{ (s)} + 6\text{NH}_3 \text{ (g)} \]

Desorption temperature ramp: 10 K/min

Accumulated NH\textsubscript{3} capacity [mol NH\textsubscript{3} / mol MgCl\textsubscript{2}]

\[
\begin{array}{|c|}
\hline
\text{Temperature [K]} & \text{NH}_3 \text{ desorption rate [mol/s]} \\
0 & 1 \times 10^{-4} \\
200 & 6 \times 10^{-5} \\
400 & 4 \times 10^{-5} \\
500 & 2 \times 10^{-5} \\
600 & 1 \times 10^{-5} \\
\hline
\end{array}
\]

1st run

2nd run

4 : 1 : 1

New Concept for Energy Storage: using Metal Ammine Complexes

Storage unit

Integrated ammonia decomposition catalyst

Release (thermal desorption)

Mg(NH$_3$)$_6$Cl$_2$

To fuel cell

NH$_3$: “largest” chemical in the world

Hydrogen

Nitrogen

Stored as NH$_3$
The H_2 Pathway

Reversible!
Ammonia Decomposition is Central

\[2\text{NH}_3 \xleftrightarrow{} \text{N}_2 + 3\text{H}_2 \]

NH$_3$ Release from Compact Tablets: Self-generated Nanoporosity

Indirect Solid Storage – Mg(NH$_3$)$_6$Cl$_2$

<table>
<thead>
<tr>
<th></th>
<th>E_{desorp}</th>
<th>$E_{migr.}$</th>
<th>E_{H-vac}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mg(NH$_3$)Cl$_2$</td>
<td>~ 0.5 eV</td>
<td>$<$0.6 eV</td>
<td>~ 0.5 eV</td>
</tr>
</tbody>
</table>

Hummelshøj, Christensen, Honkala, Nørskov, unpublished
Safe Hydrogen Storage!

1.5 liter H_2 and a lighter...
Details on the Hydrogen Capacity

“Virtual” H$_2$-pressure: \sim1300 bar!

Measured capacity. Not theoretical value

volumetric H$_2$ density [kg H$_2$ pr m3]

gravimetric H$_2$ density [mass %]

DOE 2005
DOE 2010
DOE 2015
2nd Generation Prototype – Integrated NH₃ Decomposition

Insulate the decomposition reactor with the storage material…
Compact H$_2$-Producing System

H$_2$ + N$_2$

Integrated NH$_3$-decomp reactor

μ-reactor for production of H$_2$:
Sørensen, Nielsen, Jensen, Hansen, Johannessen, Quaade, Christensen, Catal. Comm., 6 (2005) 229

Traces of NH$_3$: Absorption in degassed salt (< 10ppm NH$_3$)
Summary

Current status

• High demonstrated density
 – 9.1 wt% H\textsubscript{2}; 108 kg H\textsubscript{2}/m3
• Reversible
• Fast release kinetics
• Simple to handle in open atmosphere
• Inexpensive (ca. 0.5 €/kg)
• CO\textsubscript{2}-free energy carrier

On-going work

• Heat management
 – NH\textsubscript{3}-decomposition reactor
• Purification
 – for PEM-FC
• Packaging/recycling
Thank you for your attention