Nanowire Solar Cells

Peidong Yang
Department of Chemistry
University of California, Berkeley
Materials Science Division
Lawrence Berkeley National Laboratory
Emerging PV

- Low cost
- Intermediate efficiency
- Environmental benign
- Possible solar paint
Emerging PV

Why nanowires are important?

Materials Sciences Division
PV Performance Metrics

\[FF = \frac{J_M V_M}{J_{SC} V_{OC}} \]

\[Efficiency = \frac{P_{out}}{P_{in}} = \frac{FF \times V_{oc} \times J_{sc}}{P_{in}} \]
\[\eta_A = (1 - e^{-\alpha d}) \]

\[\eta_{ED} = e^{-d/L_D} \]

\[\text{IQE}(\lambda) = \eta_A(\lambda) \eta_{ED} \eta_{CT} \eta_{CC} \]

\[\eta_{PCE} = \frac{P_{\text{out}}}{P_{\text{in}}} = \frac{FF \times V_{OC}}{P_{\text{in}}} \int q F(\lambda)\text{IQE}(\lambda)d\lambda \]
Emerging PV

- Use of solar at terawatt levels requires drop in $/W_p$

- **3N:** New materials, New designs, New tricks

 - "dirty" semiconductors
 - organics
 - oxides
 - absorbers
 - biological subunits

 - dye-sensitized cells

 - bulk heterojunction cells
 - (polymer, organic-inorganic)

 - quantum effects
 - carrier multiplication
 - frequency shifting
 - Interface engineering

Materials Sciences Division
Dye-sensitized Photoelectrochemical Cell

DSC characteristics
- surface area of 800 – 1000 cm² per cm²
- η of 5 -10% with TiO₂ nanoparticles
- electron transport via trap-mediated diffusion
- Low efficiency at long wavelength

Materials Sciences Division
The three ways to improve DSC efficiency

1) Find dyes that function efficiently across the visible and near-IR
2) Raise open-circuit voltage closer to its theoretical maximum
3) Increase the electron diffusion length in the oxide anode, \(L_d = (D_e \tau)^{1/2} \)

- speed up electron transport
- slow recombination
- adopt a nanowire geometry
- engineer the active interface

<table>
<thead>
<tr>
<th>Nanoparticle DSC</th>
<th>Nanowire DSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>random, polycrystalline network</td>
<td>oriented single-crystalline channels</td>
</tr>
<tr>
<td>slow diffusive transport</td>
<td>fast band conduction (field-assisted)</td>
</tr>
<tr>
<td>efficient for films (\sim 10) (\mu)m thick</td>
<td>in principle, efficient for much thicker cells</td>
</tr>
</tbody>
</table>

Materials Sciences Division

\(D_e \) is electron diffusion coefficient, \(\tau \) is the lifetime of the excitons.
Nanowire DSC: Design Principle

- **high nanowire density**
- **long, thin nanowires**

<table>
<thead>
<tr>
<th>electrode</th>
<th>length (µm)</th>
<th>diameter (nm)</th>
<th>density (x10^10 cm^-2)</th>
<th>SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>nanoparticle</td>
<td>8 - 10</td>
<td>15 - 30</td>
<td>n/a</td>
<td>800 - 1000</td>
</tr>
<tr>
<td>ideal nanowire</td>
<td>20</td>
<td>60</td>
<td>3</td>
<td>1080</td>
</tr>
<tr>
<td>achieved NW</td>
<td>20</td>
<td>130</td>
<td>0.3</td>
<td>~200</td>
</tr>
</tbody>
</table>

Materials Sciences Division
Large-Scale Nanowire Array Synthesis

1st: dip-coat to get ZnO quantum dots

2nd: grow nanowires from QD seeds

- Nanowire densities of 1-40 billion cm\(^{-2}\)
- Single-crystalline wires in direct contact with the substrate
- Inexpensive and environmentally benign
- Compatible with arbitrary substrates of any size

Poly-ethylenimine (PEI):

$$H_2N-(CH_2CH_2N)_x-(CH_2CH_2NH)_y-\text{CH}_2\text{CH}_2\text{NH}_2$$

Control of Nanowire Aspect Ratio

<table>
<thead>
<tr>
<th>DSC</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>aspect ratio > 150</td>
<td>aspect ratio = 10</td>
</tr>
</tbody>
</table>

Graph:
- Diameter (nm) vs. Length (microns)
- Black squares: without PEI
- Red circles: with PEI

Images:
- Hybrid: aspect ratio = 10
- DSC: aspect ratio > 150

Scale:
- 500 nm
- 5 μm
Alignment Control

High Optical Quality

- TEM shows that the nanowires are single crystals
- Wire surfaces are clean (Raman, EELS) after 400 °C treatment
Characterization of Nanowire Arrays

Electrical: Ohmic wire-substrate contacts

- Individual wires are electrically conductive
 \[\rho = 0.1 - 1 \ \Omega \ \text{cm} \]
 mobility: 1-5 cm²V⁻¹s⁻¹
 electron diffusivity: \(D_n = 0.05-0.5 \ \text{cm}^2\text{s}^{-1} \) \([D = k_B T \mu / e]\)

Ensure larger electron diffusion length, avoiding possible interfacial recombination

FETs: Wires have high e⁻ mobility

Nanowire based DSC

- NW cells are competitive with thin TiO$_2$ nanoparticle cells ($\eta_{cc} \sim 100\%$)
- NW cells outperform ZnO nanoparticle cells

\[\eta_{PCE} = 1.5\% \text{ under AM 1.5 G conditions} \]

Nanowire DSC

Faster electron injection in NW cell

Bi-exponential (<250fs, 3ps)

vs.

Tri-exponential (<250fs, 20ps, 200ps)
Time Scale for Electron Injection and Transport

Electron injection → Dye regeneration → Electron transport → Interfacial recombination

- Time (s)
 - 10^{-13} ps
 - 10^{-11} ns
 - 10^{-9} μs
 - 10^{-7} ms
 - 10^{-5} ms
 - 10^{-3} ms
 - 10^{-1} ms

Loss mechanism: Interfacial recombination

Competition

Electron diffusion length

$L_n = \sqrt{D_n \cdot \tau_n}$

- D_n: electron diffusion coefficient
- τ_n: electron lifetime

Grätzel, M, MRS Bulletin, Jan 2005
Engineer active interface to reduce recombination

Core-sheath Nanowire Cells

Overcoat the nanostructured electrode with an insulating or semiconducting oxide

Reduce recombination

- Physically separate electrons and holes
- Form a tunneling barrier
- Passivate recombination centers on oxide surface

Shift band edge to increase V_{oc}

- Use an oxide with a higher band edge energy
- Form dipole layer that bends band upwards

<table>
<thead>
<tr>
<th>Metal Oxide</th>
<th>Band Gap (eV)</th>
<th>E_{VB} (eV vs AVS)a</th>
<th>E_{CB} (eV vs AVS)a</th>
<th>Pzc (pH)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZnO</td>
<td>3.2</td>
<td>-7.4</td>
<td>-4.19</td>
<td>8.5–9.5</td>
</tr>
<tr>
<td>TiO$_2$ (anatase)</td>
<td>3.2</td>
<td>-7.4</td>
<td>-4.21</td>
<td>5.5–6.5</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>8.0–9.5</td>
<td>-9.9</td>
<td>-1.6</td>
<td>8.5–9.5</td>
</tr>
</tbody>
</table>

aAVS = Absolute Vacuum Scale. From references 18–20. bThe point of zero charge (Pzc) depends on sample preparation, impurities, etc. From references 21–23.

Gregg, B. NREL.
Atomic Layer Deposition (ALD)

Oxides: Al$_2$O$_3$, TiO$_2$, Ta$_2$O$_5$, Nb$_2$O$_5$, ZrO$_2$, HfO$_2$, SnO$_2$, ZnO, La$_2$O$_3$, Y$_2$O$_3$, CeO$_2$, Sc$_2$O$_3$, Er$_2$O$_3$, V$_2$O$_5$, SiO$_2$, In$_2$O$_3$, ...

Perovskites: SrTiO$_3$, BaTiO$_3$, LiNbO$_3$, LaMnO$_3$...

Nitrides: AlN, TaN$_x$, NbN, TiN, MoN, ZrN, HfN, GaN, ...

Fluorides: CaF$_2$, SrF$_2$, ZnF$_2$, ...

Metals: Pt, Ru, Ir, Pd, Cu, Fe, Co, Ni, ...

Carbides: TiC, NbC, TaC, ...

Mixed structures: AlTiN$_x$, AlTiO$_x$, AlHfO$_x$, SiO$_2$:Al, HfSiO$_x$...

Sulfides: ZnS, SrS, CaS, PbS, ...

Nanolaminates: HfO$_2$/Ta$_2$O$_5$, TiO$_2$/Ta$_2$O$_5$, TiO$_2$/Al$_2$O$_3$, ZnS/Al$_2$O$_3$, ATO (AlTiO) ...

Doping: ZnO:Al, ZnS:Mn, SrS:Ce, Al$_2$O$_3$:Er, ZrO$_2$:Y, ... rare earth metals (Ce$^{3+}$, Tb$^{3+}$ etc.) also co-doping

Example: ZnS

Planar Systems, Inc.

Materials Sciences Division
Core-sheath Nanowire Dye-sensitized Solar Cells
Nanowire-polymer Hybrid Cell

Target nanowire array

1) ultrahigh nanowire density
2) short, thin nanowires
3) nanowires normal to substrate

Materials Sciences Division
Nanowire-polymer Composite Film

Aligned wires
Inter-wire spacing is 10-50 nm
$2L_D$ for P3HT \sim 20 nm
Thickness 200-300 nm
The Ideal Nanowire Cell

- Fully interdigitated donor-acceptor interface
- Acceptor wire array: high density, smaller band gap
- Donor: polymer/nanoparticles, maximize absorption
- Interface engineering: reduce recombination.
- Applicable to DSC, hybrid, and conventional semiconductor cells.

N. Lewis

Materials Sciences Division
Acknowledgement

Dr. Matt Law
Lori Geene
Dwaud Tan

Funding
DOE
ITRI

Materials Sciences Division