Energy trends and technologies in the coming decades

Steven E. Koonin
Chief Scientist
BP, plc
March, 2006
key drivers of the energy future

- GDP & pop. growth
- urbanisation
- demand mgmt.

Technology

Demand Growth
Supply Challenges
Environmental Constraints
Security of Supply
Energy use grows with economic development

energy demand and GDP per capita (1980-2002)

Source: UN and DOE EIA
energy demand – growth projections

Global energy demand is set to grow by over 60% over the next 30 years – 74% of the growth is anticipated to be from non-OECD countries

Notes:
1. OECD refers to North America, W. Europe, Japan, Korea, Australia and NZ
2. Transition Economies refers to FSU and Eastern European nations
3. Developing Countries is all other nations including China, India etc.

Source: IEA World Energy Outlook 2004
growing energy demand is projected

Global Energy Demand Growth by Sector (1971-2030)

![Bar chart showing energy demand growth by sector from 1971 to 2030.](chart)

- **Key:**
 - Green - transport
 - Yellow - power
 - Orange - industry
 - Light green - other sectors

Notes:
1. Power includes heat generated at power plants
2. Other sectors includes residential, agricultural and service

Source: IEA WEO 2004
A word about energy efficiency

- Demand depends upon more than GDP
 - Multiple factors - geography, climate, demographics, urban planning, economic mix, technology choices
 - For example, US per capita transport energy is > 3 times Japan
- Efficiency through technology is about paying today vs. tomorrow
 - Must be cost effective
 - May *not* reduce demand

US Autos (1990-2001)

Net Miles per Gallon: +4.6%
- engine efficiency: +23.0%
- weight/performance: -18.4%

Annual Miles Driven: +16%
Annual Fuel Consumption: +11%
key drivers of the energy future

- GDP & pop. growth
- urbanisation
- demand mgmt.

- significant resources
- infrastructure
- non-conventionals

Demand Growth
Supply Challenges
Technology
Environmental Constraints
Security of Supply
"Business as usual" energy supply forecast

Source: IEA WEO 2002
substantial global fossil resources

Availability of oil resources as a function of economic price

Source: IEA (2005)
increasing fungibility of fossil fuels

Primary Energy
- Natural Gas
- Coal
- Biomass
- Extra Heavy Oil

Conversion Technology
- Reforming
- Gasification
- Enzymatic/Biological Conversion
- Refining Processes
 - coking
 - hydro-treating
 - novel thermal processes
- Syngas Conversion
 - FT
 - Oxygenates
 - Chemicals
- Power Generation
- CO₂ Capture

Products
- Fuels
- Chemicals
- Electricity
- CO₂ for EOR/Storage

Markets
- United States
- Europe
- China
- India
key drivers of the energy future

- GDP & pop. growth
- urbanisation
- demand mgmt.

- significant resources
- infrastructure
- non-conventionals

- import dependence
- competition
significant hydrocarbon resource potential

Oil, Gas and Coal Resources by Region (bnboe)

Key:
- conventional oil
- gas
- unconventional oil
- coal

Source: BP Data
Regional Share of 2004 Consumption vs Reserves

- **Oil**
 - Consumption: 77%
 - Reserves: 10%

- **Gas**
 - Consumption: 60%
 - Reserves: 15%

- **Coal**
 - Consumption: 87%
 - Reserves: 64%

Key:
- Green: 3 largest energy markets (N. America, Europe and Asia Pacific)
- Orange: Rest of World

Source: BP Statistical Review 2005

Note: Oil reserve figures do not include unconventional reserves estimates
key drivers of the energy future

- GDP & pop. growth
- urbanisation
- demand mgmt.

Supply Challenges
- significant resources
- infrastructure
- non-conventionals

Technology

Demand Growth

Environmental Constraints
- local pollution
- climate change

Security of Supply
- import dependence
- competition
- CO₂ concentration is rising due to fossil fuel use
- The global temperature is increasing
 - other indicators of climate change
- There is a plausible causal connection
 - but the scientific case is not overwhelming (natural variability, forcings)
- Impacts of higher CO₂ quite uncertain
 - ~ 2X pre-industrial is a widely discussed stabilization target (550 ppm)
 - Reached by 2050 under BAU
- Precautionary action is warranted
 - What could the world do?
 - Will we do it?
• The earth absorbs anthropogenic CO₂ at a limited rate
 – Emissions must be no higher by 2050 and drop to about half of their current value by 2100 to stabilize at 550 ppm
 – This in the face of a doubling of energy demand in the next 50 years (1.5% per year emissions growth)

• The lifetime of CO₂ in the atmosphere is 200-300 years
 – The atmosphere will accumulate emissions during the 21st Century
 – Near-term emissions growth can be offset by greater long-term reductions
 – Modest emissions reductions only delay the growth of concentration (20% emissions reduction buys 15 years)
There are many social barriers to meaningful emissions reductions

- **Climate threat is intangible and diffuse; can be obscured by natural variability**
 - contrast ozone, air pollution

- **Energy is at the heart of economic activity**

- **CO₂ timescales are poorly matched to the political process**
 - Buildup and lifetime are centennial scale
 - Energy infrastructure takes decades to replace
 - Power plants being planned now will be emitting in 2050
 - Autos last 20 years; buildings 100 years
 - Political cycle is ~6 years; news cycle ~1 day

- **There will be inevitable distractions**
 - a few years of cooling
 - economic downturns
 - unforeseen expenses (e.g., Iraq, tsunamis, …)

- **Emissions, economics, and the perception of the threat vary greatly around the world**
CO₂ emissions and GDP per capita (1980-2002)

Source:
Implications of emissions heterogeneities

- 21st Century emissions from the Developing World (DW) will be more important than those from the Industrialized World (IW)
 - DW emissions growing at 2.8% vs IW growing at 1.2%
 - DW will surpass IW during 2015 - 2025

- Sobering facts
 - When DW ≥ IW, each 10% reduction in IW emissions is compensated by < 4 years of DW growth
 - If China’s (or India’s) per capita emissions were those of Japan, global emissions would be 40% higher

- Reducing emissions is an enormous, complex challenge; technology development will play a central role
Emissions and Energy 1980-2002

Primary energy per capita (Gj) vs. CO2 per capita (tonnes)

- USA
- UK
- France
- Japan
- China
- Brazil
- Ireland
- Mexico
- S. Korea
- Greece
- Russia
- Australia
- China
- Brazil
- India
- Australia
- Malaysia
- Thailand

Coal, Oil, Gas

Current global average

Graph showing the relationship between primary energy consumption and CO2 emissions per capita for various countries.
key drivers of the energy future

Demand Growth
- GDP & pop. growth
- urbanisation
- demand mgmt.

Supply Challenges
- significant resources
- infrastructure
- non-conventionals

Technology

Environmental Constraints
- local pollution
- climate change

Security of Supply
- import dependence
- competition
evaluating energy technology options

- Current **technology status** and plausible **technical headroom**
- **Budgets** for the three E’s:
 - **Economic** (cost relative to other options)
 - **Energy** (output how many times greater than input)
 - **Emissions** (pollution and CO2; operations and capital)
- **Materiality** (at least 1TW = 5% of 2050 BAU energy demand)
- **Other costs** - reliability, intermittency etc.
- Social and political **acceptability**

But we also must know what problem we are trying to solve
The two major axes of concern

High Concern over Energy Supply

Low Concern over Energy Supply

Low Carbon Constraint

High Carbon Constraint

Security Conscious World

Constrained World

Unconstrained World

Low Carbon World
Evaluating mobility options

transport sector

Key:
- supply side options
- demand side options
Evaluating power options

power sector

Concern over Future Availability of Oil and Gas

Low

High

Low

High

Coal

Unconventional Gas

Hydro

Gas Fired Power

Nuclear

H₂ for Power

Wind

Biomass

Geothermal

Solar

Concern relating to Threat of Climate Change
Hydrogen power - Peterhead and Miller

Schematic of BP Hydrogen for Power Project – DF1
Demand Side Options

Primary Energy Demand by Sector

<table>
<thead>
<tr>
<th>Sector</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other</td>
<td>26%</td>
</tr>
<tr>
<td>Industry</td>
<td>21%</td>
</tr>
<tr>
<td>Power</td>
<td>36%</td>
</tr>
<tr>
<td>Transport</td>
<td>17%</td>
</tr>
</tbody>
</table>

Demand Side Technology Options

- Building efficiency
- Smart metering
- Smart appliances
- Solar PV
- Process intensification
- Process efficiency
- Substitution
- Power plant efficiency
- CHP
- Superconductivity
- Electricity storage
- High temp. fuels cells
- Engine technology
- Lightweighting
- Urban planning
- Congestion charging
- Hybrids
- Fuels
- Lubes

Note: Other includes residential, commercial, public service and agriculture
Likely 30-year energy future

- **Hydrocarbons will continue to dominate transportation (high energy density)**
 - Conventional crude / heavy oils / biofuels / CTL and GTL ensure continuity of supply at reasonable cost
 - Vehicle efficiency can be at least doubled (hybrids, plug-in hybrids, HCCI, diesel)
 - Local pollution controllable at cost; CO$_2$ emissions now ~20% of the total
 - Hydrogen in vehicles is a long way off, if it’s there at all
 - No production method simultaneously satisfies economy, security, emissions
 - Technical and economic barriers to distribution / on-board storage / fuel cells
 - Benefits are largely realizable by plausible evolution of existing technologies

- **Coal (security) and gas (cleanliness) will continue to dominate heat and power**
 - Capture and storage (H$_2$ power) practiced if CO$_2$ concern is to be addressed
 - Nuclear (energy security, CO$_2$) will be a fixed, if not growing, fraction of the mix
 - Renewables will find niche applications but will remain a small fraction of the total
 - Advanced solar a wildcard

- **Demand reduction will happen where economically effective or via policy**

- **CO$_2$ emissions (and concentrations) continue to rise absent dramatic global action**
Questions/Comments/Discussion