It is an honour for me to be here at APS meeting and invited as Marshak lecturship

Thanks a lot to the organizers for the invitation
Scientists in Developing Countries: is there an effective way to support meaningful research?

Z. Ben Lakhdar - Faculty of Sciences - University el Manar, Tunis - Tunisia
APS Meeting - March 13-17, 2006, Baltimore - USA

- Developing Countries in the world
- Scientists in developing countries
- Research in Developing countries
- Which way for research development in developing countries? An example
- Conclusion
Developing Countries in the world

Increase of population (I.P)

World Population in 2004: 6,134 billions

2050 world Population : 9,3 billions

European Pop. x 0,91
China Pop. x 1,10

Pop. developed countries increase 4%
Pop. developing countries 55%

In 2050 Pop. developing countries ~85% of the world population
Population in both developed and developing countries will be older than today

The future?
Science shows that The world is one and leads to the conclusion that the future is common!
Situation of African Countries As example of Developing countries situation in the world

- Africa has the poorest nations in the world
- **Africa Population: 900 millions (2005),**
 In 2050; African Population will be $\times 2.21$
- Actually $\sim 45\%$ less than 15 years old
- in some countries, only 5% of children study science
- illiteracy, illness, poverty
 -- no vision for the future
- high bureaucracy
- Incoherent policy of the local authorities

- All African countries has been colonized for \sim one century and get Independence in sixtees
- Countries have many dialects such As Official language in poorest ones is French or English

- At independence, each nation, except South Africa, is in « mean age »
- They have never known industrial revolution, and yet in the civilization of new technology!

- How can Africa be involved in the new revolution, adopt the new civilization?
In 1990 → digital revolution- new economy, new society, new life, …

- In 10 years, in 2000 ~ 15% of the world population use internet
 (~1 Billion internautes), Africa use : 1,7%

- In 2005: foreign direct investment flows to Africa is the lowest*
 (2,8% of the world investments)
In East Africa, for a population of 250 Millions, total active PhD Physicists is ~140!
East Africa, ~12 countries, from Sudan to Swaziland,
Population ~250 Millions, ~140 research active PhD!
even in South Africa, ~1 PhD physicist / 140,000 people; in US: 1 PhD / 8000

(in 2004) ~ 200 scientific researchers / Million of hab. in North Africa for 2500 to 3000 / million of hab. in developed countries

For each country, the total number of scientific papers published worldwide is ~ the rate of its contribution to the world economy
Africa scientific contribution is less than 3 % over the 5 last years!

Africa has **No** Technology, Development, Research, knowledge
Research and Development is connected to the investment, this figure is an index of Africa undevelopment. Africa invests 0.6% with 0.3% is for South Africa!

So Is there an effective way to support meaningful research?

-- African countries can be classified in regions: North Africa, West Africa, Central Africa, East Africa, South Africa with different levels. The development of which is different and is increasing, so possible and leads to a hope for Africa.

- The future is common
(In 2050 Pop. developing countries ~85% of the world population, sustainable development needs contribution of all people)

- The oil of to morrow is intelligence, is young people

- Many associations, different structures (regional or International) look for the Africa Development (look at sites ref.) but the development is through science → This is the mission of scientists
Which way for research development in developing countries?

- To develop research in developing countries suppose:
 - to begin from nothing:
 - absence of equipment, of infrastructure, of technology, of environment! of tradition; of language of research
 - to accept to work with bureaucracy, with no coherent politics!...so to look for solutions
 - and to realise at each time that
 - the know how acquired overseas (scientists get PhD in developed countries) needs to be actualised, you need training; knowledge evolutes very fast, research “way” changes!
Which way for research development in developing countries?

We are in:
New world, world of a new revolution induced by:

Digital language (new language) + new technologies (optics, photonics,..)
Characterized by: Speed, Universality, Competitiveness, Globalization

Research is done by
- computer in all areas of science
- new kind of equipment: Not heavy, not expensive, (or very huge one for multinational community)
- and connexion by internet

This new world, is world of intelligence (knowledge)! And concerned by Sustainable development

Is it Possible to Africa to be in this revolution and take the train!?

The answer is Yes
- It is easier than before, digital revolution gives a chance to developing countries:
 - researcher is no more isolated! Scientists can help and and Exist potentialities ready for research development in many countries in Africa.
Which way for research devt. in developing countries?
I will present an example of way research devt choice in Tunisia as developing country-
1956: Independence, the government priorities: women becomes equal to men in law in 1956, investment in education! The result of that is seen below!

~1960: Tunisian University creation
- 1 Faculty of Sciences,
- ~500 students; 3% (female)
- 2 PhD over the population!

1967: ~10 PhD over the population (~6 Millions)

Students future? ???????

1999, Creation of the first structure for research
Research in Tunisia has in 2005 an investment of 1% of its GDP and is actually structured with laboratories, units of research, presence of women in all economic areas and particularly in education, centres of research for desertification, biotechnology, telecommunications, .. And an increasing of the number of researchers.
Present distribution of women in academic positions in Physics (2004)

<table>
<thead>
<tr>
<th>Position</th>
<th>Prof.</th>
<th>Lect.</th>
<th>Ass. Prof.</th>
<th>Ass.</th>
<th>Agreg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women/T total</td>
<td>6/70</td>
<td>12/76</td>
<td>67/334</td>
<td>82/240</td>
<td>3/43</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>units</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>number of units</td>
<td>328</td>
<td>408</td>
<td>494</td>
<td>594</td>
<td>703</td>
<td>842</td>
</tr>
<tr>
<td>financing foreseen to the 10th plan</td>
<td>56.700 M.D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>laboratories</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>years</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of laboratories</td>
<td>98</td>
<td>107</td>
<td>132</td>
<td>140</td>
<td>155</td>
<td>170</td>
</tr>
<tr>
<td>financing foreseen to the 10th plan</td>
<td>50.079 M.D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Recent years evolution of researchers

<table>
<thead>
<tr>
<th>Years</th>
<th>99-00</th>
<th>00-01</th>
<th>01-02</th>
<th>02-03</th>
<th>03-04</th>
<th>04-05</th>
<th>05-06</th>
<th>06-07</th>
<th>07-08</th>
<th>08-09</th>
<th>09-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registered in Masters</td>
<td>6430</td>
<td>8620</td>
<td>10600</td>
<td>11250</td>
<td>13518</td>
<td>12750</td>
<td>13500</td>
<td>14250</td>
<td>15000</td>
<td>15000</td>
<td>15000</td>
</tr>
<tr>
<td>Registered in Doctorates</td>
<td>2220</td>
<td>2350</td>
<td>2450</td>
<td>2600</td>
<td>3000</td>
<td>3500</td>
<td>4000</td>
<td>4500</td>
<td>4800</td>
<td>5300</td>
<td>5600</td>
</tr>
<tr>
<td>PhD</td>
<td>97</td>
<td>107</td>
<td>140</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
</tr>
<tr>
<td>Total number of registered</td>
<td>8630</td>
<td>10970</td>
<td>13850</td>
<td>14950</td>
<td>16000</td>
<td>16250</td>
<td>17300</td>
<td>18750</td>
<td>19800</td>
<td>20200</td>
<td>20600</td>
</tr>
</tbody>
</table>

Position of Tunisian researchers compared with other countries and their equivalent in full time / 1000 actives

<table>
<thead>
<tr>
<th>year</th>
<th>1998</th>
<th>1999</th>
<th>2000</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Researchers and assimilated</td>
<td>6563</td>
<td>6911</td>
<td>7516</td>
<td>8515</td>
<td>9980</td>
<td>11265</td>
</tr>
<tr>
<td>(Researchers /1000 actives)</td>
<td>2.14</td>
<td>2.20</td>
<td>2.34</td>
<td>2.59</td>
<td>2.94</td>
<td>3.26</td>
</tr>
</tbody>
</table>

Evolution of Masters and Doctorates PhD – in Tunisia
This situation of research development in Tunisia could not take place if there were not an effort of scientists who came back from overseas with their PhD and tried to develop research laboratories.

I will focus on an example, the development of research of our laboratory at the beginning in the eighties in Tunisia which will gives an idea of obstacles that a researcher has when he likes to do research in his country-
Students overseas?

Good students have fellowships to prepare PhD

Overseas? It should be Everywhere in developed world, but Tunisian students, because of language go to France!
- I get my Master, PhD (Pierre Marie Curie University - Paris)
Field of research:
Atomic & molecular physics - spectroscopy.

It was experimental research: analysis of collision between atoms from experimental spectra

I return to Tunisia in 1978
How to develop local research? My supervisor told me: it needs 20 years to put on a lab!
Which research? which approach?

- begin from subject mastered: I liked to reproduce my set up!

Equipment? I need a Monochromator first - 1/ Look locally (in each university of developing country we may find *some donation!*), I found one monochromator 30 years old! I tried to use it, but how to change some elements? **Wrong way!**

2/ I get money for a New one \(;\) wait 5 years, pay 3 times the price, bad infrastructure (heat of climate is bad for optics, current stability, ..) **Wrong way!**

1/ I had to be **Independent from bureaucracy!**

I Changed the approach of research: I will take spectra from astrophysicists, use theoretical analysis!

Needs: -Computer, -Software, -Training

- **knowledge:** Understanding and mastering of computational simulation of ab initio electronic structures

- **Patience!**
- No library (no books, no review)
- No conference participation,
- No research understanding from politics or society!

2/ I did many Contacts and ask for help inside (87, IRSIT, SOTUTEL, TMI,...) to get computer and outside (friends in France, ..) for books, bibliography, some training

3/ Which subject of research? We need To belong to the scientific international community, (Publish or perish!) but subject with interest should be with ~ no concurrence and the research should lead to paper in international review

Who can advice? no environment?
Each step seems as big as a mountain!

4/ How to get Understanding and mastering? That needs Environment and Training, for that involvement in all kind of Projects of research between Tunisia and France—(this scientific cooperation began ~1985)

1 month for training + one, two visitors per year for one week! When Communication and interaction are the lifeblood of science!

→ Which researcher can accept such situation?
→ Which research group accept to cooperate? Situation was Too early for cooperation with developed laboratories,

Without perseverance, optimism and confidence, we would make no progress, 10 years for the first paper! And thanks to my colleagues from France who helped us a lot.

But we get: Understanding and mastering, this is the first condition for development, we can then do research at ~equal level

→ we can move ahead at an advanced level—more visibility—this allows cooperation
5/ Cooperation is a kee in the development of research!

- *Researchers accept to coopare when Competivness is save and more high, in ninghtees, our situation became better, cooperation became possible:*
 - more visits of lecturers – developped thesis in sandwich – get post doc overseas
 - develop Cooperation with Other disciplines: biologists, chemists, ..

Developed nations can act as partners

- We Implement all kind of cooperation with different laboratories
 - South - North

 - South – South: we liked to help researchers from Africa and initiate computing molecular physics. We do that in Cameroon since 5 years, offer training in our lab, access by internet to our lab, actually there is a group developed in cameroon and we have the second thesis in sandwich –Thanks to ICTP for finance

 - Local cooperation : with chemists, biologists, interdisciplinarity

- We develop a Network in computing molecular physics between: cameroon, Morocco, Tunisia, France-Thanks to AUF

- We Call Diaspora , Expatriates researchers to come and coopere- this is developed and financed actually by the government to encourage diaspora to assist local laboratories
Development of research?

First Research Activity (First group)

H₂O₂ + H → H₂ + HO₂
Computing physics, applied mathematics is a product of digital revolution, researcher is no more isolated –

Internet ➔ change life of researcher,
(ubiquitous, variety, interactivity)

Africa can access to Digital revolution
So These are kinds of research to be developed in African countries, not expensive, with big impact in all areas of economy actual and for the future.

needs: good Education, training
Example: the network developed

Second step: development of experimental research – We learn physics by doing- For visibility to young student
Development of research? Technology development?

Experimental Research (second step)

- **Why?** → - Learning, Teaching,
 - **How?** → - PhD for engineer who is technician at the same time, so less experimental problems
 - **Money?** → - Look for Research project on environment

Equipment ?: not sophisticated

Development: extend to different kind of techniques in spectroscopy, TDLAS, LIF, LIBS, CRDS

- PhD in sandwich with France
- Frequent Visits of technicians and co-supervisors
 - Frequent visits of retired scientists from France

The research is on fundamental aspect but with Applications (for more visibility, to get money)

Arc, diode laser, Nd YAG, THR, ..PM, PC, labview, software
Experimental research development is possible with no sophisticated and new kind of equipment.

Learning by doing is to implement in developing countries, allowing visits for students, for high schools, open windows for young. Young feel more connected to their country.

Do basic research with applications –visibility– for the government -the sponsor- who asks for rapid impact?

Basic research? Is To develop, Is needed for The future?

Experimental research Needs of basic know how, this can be obtained by training in developed laboratories in the frame of sandwich PhD program + local training which presence of supervisors locally for short periods, (retired scientists can bring their support; succeed group from Africa can help each other also).
6/ How to assure local Training?

By Organization of Workshops and schools: National, regional and international level

- Oct. 92 Transfert des connaissances en Sciences et Techniques
 → We need not a transfer of technology but to receive good education, to build good knowledge, to develop talent → training of teachers
- Sept. 97 Laser and Applications in Industry, Medicine and Environment
- Déc. 2002 Laser et Applications
- Jan. 2002 Plasma Physics and LIBS
- Nov. 2005 Quantum Physics and Chemistry Systems -QPCSX
- Déc. 2005 Plasma Physics and Applications

Schools for Training of Trainers (national and regional level) with appropriate educational material

- Avril 2004 Ecole de Physique-Chimie Quantique
- Mars 2005 Active Learning in Optics and Photonics
- Sept. 2005 Ecole de Physique Moléculaire – FST

-Schools for training young: optics, laser, astrophysics,..
- Training locally is good but it is necessary to add a Training as that of ICTP?

- High quality Training; fresh your mind, actualize knowledge, offer stimulating research environment

- Lecturers, International communauty
- Facilities,
- interactions, with different researchers,
- Meet people with similar backgrounds and problems

- fellowships,
- Through ICTP- network projects → South – South cooperation

- LAM network
- ICTP helps you to continue research at home
 (Researchers from Developing countries need outside help if they hope to make progress)

To get this kind of training we need to develop a centre as ICTP in Tunisia
7/ we like then to built an international centre like ICTP for optics photonics

Such centre like ICTP will give possibility of training, of interaction and connection between scientists from different with different culture from developing as well as developed countries.

Science becomes increasingly a collaborative entreprise, such centre will contribute for that dev.

Connecting scientists to work with one another on an equal footing in a collaborative way is basic for the development of common future. This centre will enhance locally the development of research and will enhance cooperation at regional level.

«
Conclusion

Scientists in Developing Countries:
is there an effective way to support meaningful research?

Situation in developing countries – in Africa for ex- is different from one region to the other one: North Africa, West Africa, East, ..

Research needs High quality education talent people. These people exist,
Most countries in Africa are actually aware of the role of research for the development, so the strusture exists or is coming

The problem is the absence of scientific environment-need of supervisor, of advicer, of tradition of research, This could be done. Scientists from developed as well as from developing countries can help.
Is there an effective way for research development? Yes - there is the scientific community has a crucial role to play →

We need each other – scientists from developed countries can use their expertise to initiate, follow and supervise young researchers in Africa; Connexion with internet exists or will exist - Retired scientists are less in competitiveness and can help (To develop local research laboratories is not more difficult than to extract minerals or oil, money will come later)

1/ look for Independence from bureaucracy

2/ help for research orientation, for Publish or perish!, for involvement in project of research

3/ Training- for Understanding and mastering

4/ Cooperation- partnership, Diaspora researchers like to help

Africa can access to Digital revolution

Computing physics, applied mathematics
Experimental Research (light equip.)
Basic research

6/ to built an international centre like ICTP
Thank you
References:
- Population and environmental change- (the state of the world population 2001 (UNFPA) UN division - World Population prospects: The 2000 revision
- Intelligent n° 2339, Nov 2005
- UNDP-CAWTAR, 2001;
- Physics World, vol 18, n° 10, Oct 2005- physicsweb.org;
- Bilan du Monde 2006- Le Monde- Ed Speciale
- Courrier de l’UNESCO- Mars 1988
Sites of associations for development of Africa

- African association of Universities-www.aau.org
- African Academy of Sciences-www.aasciences.org
- African Technology Policy Studies Network-www.atps.net.org
- African Centre for Technology Studies
 - www.acts.or.ke
- Commonwealth of learning
 - www.col.org
- Partnership to strengthen African universities
 - www.carnegie.org/sub/program/partnership.html
- South African Agency for Science and Technology advancement-
 - www.saasta.ac.za