SPIN-UP and the Recent Increase in the Number of Undergraduate Physics Majors

Robert C. Hilborn

University of Texas at Dallas

American Physical Society, April 13, 2008

Support from

American Association of Physics Teachers,
American Physical Society
American Institute of Physics
The ExxonMobil Foundation
The Big Questions

- Why do some undergraduate physics programs “thrive” while others are less successful?

- How do undergraduate physics programs move from “good” to “great”?
Outline

II. Some examples and a counter-example.

III. What has happened since.

IV. Take home messages.
Why Should We Care?

The skeptic: “People have succeeded in physics with education from many different kinds of departments. Those good enough to do physics will succeed no matter what.”

- We need more people with strong STEM backgrounds. (Scientists, teachers, lawyers, legislators, ...)
- Understanding what makes programs thrive helps improve education across the board.
Recent Physics Bachelor’s Degree Production

Source: AIP Statistical Research Center: Enrollments and Degrees Report, and NCES Digest of Education Statistics
National Task Force on Undergraduate Physics (2000-2006)

SPIN-UP

Strategic Programs for Innovations in Undergraduate Physics
National Task Force
on Undergraduate Physics (2000-2006)

J. D. Garcia (U. Arizona)
S. James Gates (U. Maryland)
Robert Hilborn (UT Dallas), Chair
Ruth Howes (Marquette), Co-Chair
Ken Krane (Oregon State)
Liz McCormack (Bryn Mawr)

Laurie McNeil (U. North Carolina-Chapel Hill)
Jose Mestre (Illinois)
Tom O’Kuma (Lee College)
Doug Osheroff (Stanford)
Joe Taylor (Princeton)
Carl Wieman (U. Colorado, U. British-Columbia)

Ex Officio:
AIP- J. Stith, J. Hehn
APS-J. Franz, T. Hodapp
AAPT-B. Khoury, W. Hein
PKAL – J. Narum
SPIN-UP

- Site Visits to 21 “thriving” undergraduate physics programs.
- Survey (with AIP) of all 761 bachelor’s degree-granting physics programs in the US (74% response).
- Report and Analysis. 2002-2003

What do we mean by “thriving”?
Site Visit Departments
visits carried out by 65 physics volunteers + Task Force members

- Angelo State University
- University of Arizona
- Bethel College
- Brigham Young University
- Bryn Mawr College
- Colorado School of Mines
- Cal State San Luis Obispo
- Carleton College
- Grove City College
- Harvard University
- University of Illinois
- University of Wisconsin-LaCrosse
- Lawrence University
- North Carolina State Univ.
- North Park University
- Oregon State University
- Reed College
- Rutgers University
- SUNY Geneseo
- University of Virginia
- Whitman College
- Trial Site Visit 2000
- PhysTEC Site Visit 2000
- SPIN-UP Site Visit 2001-02
Essential Findings for Thriving Undergraduate Physics Programs

- The department is the crucial unit for change. The department must “own” the undergraduate program.

- The program is more than courses.

- Change takes time and energy (but not necessarily a lot of money) and is an on-going process.
What Makes an Undergraduate Physics Program Thrive?

Physics Today, September, 2003

- Strong and *sustained* departmental *leadership*.

- Well-defined sense of *mission* (correlated with mission of the institution).

- Emphasis on the *entire program* of the department, large fraction of the faculty engaged.
Details

- Recruit and retain students
 - Challenging and supportive program
 - Career information - alumni
 - Introductory courses
 - Prof. development and mentoring
 - Multiple-tracks/options
 - Research experiences – early and often
What makes an undergraduate program thrive?

- A widespread attitude among the faculty that the department has the primary responsibility for improving the program – not a bunch of whiners

- A challenging but supportive program with many opportunities for student-faculty interactions

- Continuous evaluation and experimentation

- Strong and sustained leadership (worth mentioning again)
What is not on the list?

- Major interdisciplinary efforts (except through multiple-tracks)
- Radically different curricula
- Watered-down curricula
- Extraordinary use of IT – almost everybody uses some – no big deal
- Lavish new buildings and equipment
An Apparent Counter-Example

- What went wrong?
The SPIN-UP Report and Departmental Guidelines

Report: http://www.aapt.org/Projects/ntfup.cfm

AAPT Guidelines for Self-Study and External Evaluation of Undergraduate Physics Programs
Consulting Site Visits

- Available upon request
- Department pays travel and local expenses
- Contact Bob Hilborn
 rhilborn@utdallas.edu
What has happened since the SPIN-UP study?

- Data from departments that have had large increases in the number of undergraduate physics majors since 2000.
 - Average 1997-1999
 - Average 2003-2005
 - N > 15 in 2005
Top Increases

1997-99 -> 2003-05

Research Universities (N>15 for 2005)

<table>
<thead>
<tr>
<th>University</th>
<th>2005</th>
<th>Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA-U of, Davis</td>
<td>33</td>
<td>big</td>
</tr>
<tr>
<td>Michigan State U</td>
<td>26</td>
<td>164%</td>
</tr>
<tr>
<td>CA-U of, Santa Barbara</td>
<td>34</td>
<td>163%</td>
</tr>
<tr>
<td>CA-U of, Riverside</td>
<td>15</td>
<td>153%</td>
</tr>
<tr>
<td>Cornell U (Appl Sci)</td>
<td>37</td>
<td>151%</td>
</tr>
<tr>
<td>AR-U of, Fayetteville</td>
<td>19</td>
<td>148%</td>
</tr>
<tr>
<td>New York U (NYU)</td>
<td>15</td>
<td>142%</td>
</tr>
<tr>
<td>South Florida-U of</td>
<td>16</td>
<td>131%</td>
</tr>
<tr>
<td>NM Inst of Mining & Tech</td>
<td>17</td>
<td>130%</td>
</tr>
<tr>
<td>Georgetown U</td>
<td>25</td>
<td>121%</td>
</tr>
<tr>
<td>CA-U of, Santa Cruz</td>
<td>25</td>
<td>119%</td>
</tr>
<tr>
<td>Maryland-U of, Coll Park</td>
<td>31</td>
<td>118%</td>
</tr>
<tr>
<td>MA-U of, Amherst</td>
<td>30</td>
<td>107%</td>
</tr>
<tr>
<td>Arizona-U of</td>
<td>39</td>
<td>100%</td>
</tr>
<tr>
<td>Minnesota-U of, Minnpls</td>
<td>27</td>
<td>95%</td>
</tr>
<tr>
<td>Florida-U of</td>
<td>17</td>
<td>92%</td>
</tr>
<tr>
<td>Brown U</td>
<td>19</td>
<td>92%</td>
</tr>
<tr>
<td>Washington-U of</td>
<td>78</td>
<td>81%</td>
</tr>
<tr>
<td>IL-U of, Urbana/Champaign</td>
<td>48</td>
<td>75%</td>
</tr>
</tbody>
</table>
Primarily Undergraduate Institutions (N > 15 for 2005)

<table>
<thead>
<tr>
<th>Institution</th>
<th>BS05</th>
<th>Chge</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Madison U</td>
<td>17</td>
<td>371%</td>
</tr>
<tr>
<td>Cal Poly St U-San L.O.</td>
<td>30</td>
<td>243%</td>
</tr>
<tr>
<td>Williams Coll</td>
<td>19</td>
<td>104%</td>
</tr>
<tr>
<td>WI-U of, River Falls</td>
<td>15</td>
<td>94%</td>
</tr>
<tr>
<td>Dickinson Coll</td>
<td>16</td>
<td>90%</td>
</tr>
<tr>
<td>Charleston-Coll of</td>
<td>16</td>
<td>87%</td>
</tr>
<tr>
<td>Gustavus Adolphus Coll</td>
<td>16</td>
<td>74%</td>
</tr>
<tr>
<td>Harvey Mudd Coll</td>
<td>21</td>
<td>37%</td>
</tr>
<tr>
<td>Bethel Coll (MN)</td>
<td>15</td>
<td>34%</td>
</tr>
</tbody>
</table>
Why Isn’t Every Program Thriving?

- Melba Phillips: “The problem with physics education problems is that they don’t stay solved.”
- Albert Einstein: “We can’t use the same kind of thinking to solve problems as we did when we created them.”
- John Russell: “All reform is ultimately local.”
Sustaining Enhancements

Planning
Thinking

Dissemination
and
Feedback

Experimentation

Individuals, departments, institutions, disciplines...
Theory

- Lev Vygotsky
 - Cultural mediation
 - Situated learning
- Jerome Bruner – Narrative Construction of Reality
Hitting the target

- Institution-wide programs are often too “dilute.”
- Individual investigator efforts are hard to sustain and to spread.
- Curriculum-only projects do not build the political infrastructure.

➤ The department is the political unit that can make things work.
 - Cf. NSF efforts in the 1960s
Other Connections

- Sheila Tobias, “Revitalizing Undergraduate Science: Why Some Things Work and Most Don't” (1992)
- Jim Collins, From Good to Great (HarperCollins, New York, 2001)
Take Home Messages

- SPIN-UP provides 21 “existence proofs” that real STEM departments can build thriving programs. Many more since then.
- There are several models of successful programs. (Build on local strengths.) One size does not fit all.
- Meaningful change requires that you understand your entire undergraduate program and your students and keep working.